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1. Introduction

In this survey we consider the groups Aut(X) and Bim(X) of all biregular and
bimeromorphic self-maps, respectively, for a compact complex connected Kähler
manifold X. If X is projective, then Bim(X) = Bir(X) is the group of all birational
transformations of X (see [74]). The manifolds we are going to deal with are of spe-
cial type: X has to be a P1-bundle over a non-uniruled compact complex connected
manifold Y .

In general, the groups Bim(X) may be very huge and non-algebraic (for example,
the Cremona group Crn of birational transformation of the n-dimensional projective
space). Thus one is tempted to study the properties of a group via its finite and/or
abelian subgroups. Namely, we are interested in the following properties of groups.

Definition 1.1. (a) A group G is called bounded if the orders of its finite sub-
groups are bounded by a universal constant that depends only on G (see [58; Defi-
nition 2.9]).

(b) A group G is called Jordan if there is a positive integer J such that every
finite subgroup B of G contains an abelian subgroup A that is normal in B and
such that the index [B : A] 6 J . The smallest such J is called the Jordan constant
of G and is denoted by JG (see [76; Question 6.1], [58; Definition 2.1], [59]).

(c) A Jordan group G is called strongly Jordan [62], [5] if there is a positive
integer m such that every finite subgroup of G is generated by at most m elements.

(d) A group G is very Jordan [7] if there exist a commutative normal subgroup G0

of G and a bounded group F that sit in a short exact sequence

1 → G0 → G→ F → 1. (1)

In what follows by a Jordan property we mean any one of the properties described
in Definition 1.1. The study of these properties has been inspired by the following
fundamental results.

Theorem 1.2 (M.-E.-C. Jordan (1878), [32], [77; Theorem 9.9]). Let C be the
field of complex numbers. Then GL(n,C) is strongly Jordan.

Theorem 1.3 (J.-P. Serre (2009), [76; Theorem 5.3]). Cr2 = Bir(P2) is Jordan,
JCr2 6 210 34 52 7.

It was V. L. Popov who asked in [58] a question whether for an algebraic va-
riety X the groups Aut(X) and Bir(X) are Jordan. This question originated an
intensive and fruitful activity. It was proved that there are vast classes of manifolds
(varieties) with Jordan groups Aut(X), Bim(X), and Bir(X); see § 4. In particular,
the Cremona group Crn = Bir(Pn) appeared to be Jordan for all n ([62] and [10];
this is the positive answer to a question formulated by J.-P. Serre). In § 4 we give
a glimpse on the richness of known facts about the Jordan properties of Aut(X),
Bim(X), or Bir(X) for various types of varieties X. We do not pretend to give
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a complete picture. Our aim is to demonstrate that the “worst” manifolds from
this point of view are uniruled but not rationally connected ones. For example, the
group Bim(X) is not Jordan if X is bimeromorphic to a product of a complex torus
of positive algebraic dimension and the projective space PN , N > 0 (see [85], [87]).

In this survey we concentrate on the manifolds of this kind. Namely, our main
object of consideration are P1-bundles over non-uniruled manifolds, that is, triples
(X, p, Y ) such that

• X, Y are compact complex connected Kähler manifolds;
• p : X → Y is a holomorphic map from X onto Y ;
• Y is not uniruled;
• for every point y ∈ Y the fibre p∗(y) is isomorphic to P1; in particular, it is

irreducible and reduced.
We say that such a triple (X, p, Y ) has an almost section D if an irreducible

analytic subset D ⊂ X, codim(D) = 1, meets a general fibre of p at precisely
one point (see Definition 6.5). We say that such a triple (X, p, Y ) (or X, or the
morphism p) is scarce if X does not admit three distinct almost sections A1, A2, A3

such that A1∩A2 = A1∩A3 = A2∩A3 (see Definition 11.5). We say that a connected
compact complex manifold Y is poor (Definition 13.1) if it contains neither rational
curves nor analytic subsets of codimension 1.

The facts that we know about Jordan properties of P1-bundles (X, p, Y ) over
non-uniruled Kähler manifolds are summarized below.

Summary. 1) Aut(X) is always Jordan ([34], for surfaces see also [86]) and even
strongly Jordan (see Remark 4.1).

2) If morphism p is scarce, then Aut(X) is very Jordan (Theorem 12.1 of this
paper).

3) If Y is a torus and X is not a projectivization of a decomposable vector bundle
of rank 2 on Y , then the group Aut(X) is strongly Jordan [78].

4) If X and Y are projective, and X is not birational to Y × P1, then Bir(X) is
strongly Jordan [5].

5) If Y is a poor manifold (see Definition 13.1), then Bim(X) coincides with
Aut(X) and is very Jordan [7].

6) If Y is a complex torus and there is no almost section of p, then Bim(X) is
Jordan [78]. In particular, if X is not the projectivization of a rank 2 vector bundle
on Y , then the group Bim(X) is strongly Jordan.

7) If Y is a complex torus of positive algebraic dimension andX is bimeromorphic
(birational, if Y is projective) to a direct product Y × P1, then the group Bim(X)
(respectively, Bir(X)) is not Jordan [85], [87].

8) If Y is a complex torus of positive algebraic dimension, Ya is its algebraic
reduction, L is the lift to Y of a holomorphic line bundle on Ya, and X is the
projectivization of the rank 2 vector bundle L⊕1, then Bim(X) is not Jordan [87].

9) Open question. Assume that Y is a complex torus of positive algebraic di-
mension and X has no representation as in previous item. Is Bim(X) Jordan?

Our goal is to give a review of the methods used to prove these facts. The results
unpublished previously are provided with full proofs.
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All manifolds are compact complex, and connected unless otherwise stated. All
algebraic varieties are complex, projective, irreducible, and reduced. Pn and Cn are
complex projective and affine spaces, respectively; Pnk and Cnk are projective and
affine spaces, respectively, over an algebraically closed field k.

The structure of the survey is as follows. In § 2 we provide facts and examples
concerning bounded, Jordan, and very Jordan groups. In § 3 we enumerate the
assumptions and notation and recall the notions related to manifolds and their maps.
In § 4 we give examples of the known facts about the Jordan properties of Aut(X),
Bim(X), and Bir(X) for various types of manifolds X. Our aim is to demonstrate
a special role of P1-bundles over a non-uniruled base in this field. In § 5 we provide
some generalities on maps of P1-bundles. In § 6 we deal with the group Bim(X) of
a non-trivial rational bundle (in particular, projective conic bundle). In Chapter 3
we deal with certain P1-bundles over complex tori. We present a unified approach
to proving results of [85] and [87]. It is based on symplectic algebra, which offers
highly useful tools for studying line bundles over tori, and is inspired by the work
of D. Mumford [46]. In Chapter 4 we consider P1-bundles (X, p, Y ) with scarce sets
of sections over a non-uniruled Kähler base. That chapter presents a generalization
and a modification of [7]. First, in § 11, for a P1-bundle (X, p, Y ) we consider
the group Aut(X)p of those automorphisms of X that leave every fibre of p fixed.
In three subsections we describe three different types of such automorphisms. In
§ 12, under the assumption that Y is Kähler and not uniruled and p is scarce, we
prove that the neutral component Aut0(X) of the complex Lie group Aut(X) is
commutative, hence Aut(X) is very Jordan. In § 13 we prove that if Y is poor, then
p is scarce and Aut(X) is very Jordan.

Acknowledgements. We are deeply grateful to Frédéric Campana, Igor Dol-
gachev, Lei Ni, Constantin Shramov, and Vladimir L. Popov for helpful stimulating
discussions. Our special thanks go to the referee, whose numerous valuable com-
ments helped us to improve the exposition.

Chapter 1. Preliminaries

In this chapter we provide some backgrounds: the properties of Jordan groups,
the notation, assumptions, and definitions.

2. Jordan properties of groups

In this section we recall the general facts about the Jordan properties of groups.
The following properties are easy consequences of Definition 1.1.

1) Every finite group is bounded, Jordan, and very Jordan.
2) Every commutative group is Jordan and very Jordan.
3) Every finitely generated commutative group is bounded. Indeed, such a group

is isomorphic to a finite direct sum with every summand isomorphic to Z or Z/nZ,
where n is a positive integer.

4) A subgroup of a Jordan group is Jordan. A subgroup of a very Jordan group
is very Jordan.
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5) “Bounded” implies “very Jordan”, “very Jordan” implies “Jordan”.
6) “Bounded” implies “strongly Jordan”. On the other hand, “very Jordan” does

not imply “strongly Jordan”. For example, a direct sum of infinitely many copies of
Z/2Z is commutative but has finite subgroups with any given minimal number of
generators.

Example 2.1. The group GL(n,Z) is bounded. This is a consequence of the
following theorem of Minkowski [77; § 9.1].

Theorem 2.2 (Minkowski, 1887). If an element a ∈ GL(n,Z) is periodic, and
a = 1modm for m > 3, then a = 1.

It follows that every finite subgroup H ⊂ GL(n,Z) embeds into GL(n,Z/3Z)
(there are much more precise bounds: see [75; Theorem 1.1]). Since every finite
subgroup of GL(n,Q) is conjugate to a subgroup of GL(n,Z) (see [75; Lecture 1]),
the group GL(n,Q) is also bounded.

Example 2.3. The multiplicative group C∗ of C is commutative, very Jordan
but not bounded. The same is valid for the group of translations of a complex torus
of positive dimension.

Example 2.4. From Theorem 1.2 it follows that the group GL(n, k) is strongly
Jordan for every field k of characteristic zero. Moreover, every linear algebraic
group over k is strongly Jordan. On the other hand GL(n, k) is obviously not very
Jordan if n > 2.

The following precise values of Jordan constants for groups GL(n,C) were found
by M. J. Collins.

Theorem 2.5 [18; Theorems A and B]. For the Jordan constants of groups
GL(n,C) the following relations hold:

(i) JGL(n,C) = (n+ 1)! if n > 71 or n = 63, 65, 67, 69;
(ii) JGL(n,C) = 60r · r! if 20 6 n 6 62 or n = 64, 66, 68, 70 where r = [n/2].

The information on the values of Jordan constants for the groups GL(n,C),
n < 20, is given in extensive tables provided in the same paper.

Example 2.6. We use below analogues of the Heisenberg groups that were used
by D. Mumford [46]. Let

• K be a finite commutative group of order N > 1;
• µN ⊂ C∗ be the multiplicative group of Nth roots of unity;
• K̂ = Hom(K, µN ) (the dual of K).

Mumford’s theta group GK for K is the group of matrices of type1 α γ

0 1 β

0 0 1


where α ∈ K̂, γ ∈ C∗, and β ∈ K. The product of α ∈ K̂ and β ∈ K is defined
by a certain natural non-degenerate alternating bilinear form eK on HK = K× K̂
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with values in C∗ [85; p. 302]. This group can be included in a short exact sequence

1 → C∗ → GK → HK → 1

where the image of C∗ is the center of GK.
Properties of GK [85; p. 302] imply that it is a theta group attached to the

non-degenerate symplectic pair (HK, eK) in the sense of Chapter 3 below. By
Theorem 7.17 below, GK is Jordan and

JGK
=

√
#(HK) = N = #(K).

In particular, if K = Z/NZ, then JGZ/NZ = N .

Example 2.7. The example of a non-Jordan group is given by SL(2,Fp), where
Fp is the algebraic closure of a prime finite field Fp with p elements.

Indeed, if q = pn > 4, then SL(2,Fq) ⊂ SL(2,Fp) (here Fq is the q-element field).
The group SL(2,Fq) is non-commutative, finite, and has order (q2 − 1)q. Every
normal subgroup C ( SL(2,Fq) consists of one or two scalars, thus the indices

[SL(2,Fq) : C] =
1
2
(q2 − 1)q or (q2 − 1)q

are unbounded as n tends to infinity. Hence SL(2,Fp) is not Jordan.

Remark 2.8. An analogue of Jordan’s theorem holds for matrix groups over
fields k of prime characteristic p if one considers only finite subgroups, whose order
is prime to p. On the other hand there are generalizations of Jordan’s theorem
(Brauer–Feit [14], Larsen–Pink [38]) that deal with arbitrary finite subgroups and
take the orders of their Sylow p-subgroups into account. These results have led to
the following definition [30; Definition 1.6] (it will be used in Remark 4.3(iv) below).

A group G is called p-Jordan if there exist positive integers J and e such that
every finite subgroup B of G contains an abelian p′-subgroup A that is normal
in B and such that the index [B : A] 6 |Bp|eJ . Here |Bp| is the order of a Sylow
p-subgroup of B.

Remark 2.9. Let G be a group. Assume that it can be included into the fol-
lowing exact sequence of groups

0 → H → G→ F → 0.

Then the following hold:
(i) if F is bounded and H is bounded, then G is bounded;
(ii) if H is very Jordan and F is bounded, then G is very Jordan;
(iii) if F is bounded, then G is Jordan if and only if H is Jordan [58; Lemma 2.11];
(iv) if H is bounded and F is strongly Jordan, then G is Jordan [62; Lemma 2.8];
(v) G being Jordan does not imply that F is Jordan;
(vi) F and H being Jordan does not imply that G is Jordan.

We will need the following modification of Lemma 5.3 in [7].
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Lemma 2.10. Consider a short exact sequence of connected complex Lie groups:

0 → A
i−→ B

j−→ D → 0.

Here i is a closed holomorphic embedding and j is surjective and holomorphic. As-
sume that D is a complex torus and A is isomorphic as a complex Lie group either
to (C+)n or to C∗ . Then B is commutative.

Proof. The proof of this lemma coincides verbatim with the proof of Lemma 5.3
in [7] where the case n = 1 is treated.

Step 1. First, let us prove that A is a central subgroup in B. Take any element
b ∈ B. Define a holomorphic map φb : A → A, φb(a) = bab−1 ∈ A for an element
a ∈ A. Since it depends holomorphically on b, we have a holomorphic map ξ : B →
Aut(A), b→ φb.

Since A is commutative, for every c ∈ A we have φbc = φb. Thus there is
a well-defined map ψ fitting into the following commutative diagram:

B
j

����
��

��
�� ξ

##G
GG

GG
GG

GG

D
ψ // Aut(A)

The map ψ = ξ ◦ j−1 is defined at every point of D. It is holomorphic (see, for
example, [55; § 3]).

Since D is a complex torus, and Aut(A) is either GL(n,C) (if A = (C+)n) or
consists of two elements, id and a 7→ a−1 (if A = C∗), we have ψ(D) = {id}. It
follows that A is a central subgroup of B.

Step 2. Now let us show that B is commutative. Consider a holomorphic map
com: B ×B → A defined by com(x, y) = xyx−1y−1. Since A is a central subgroup
of B, similarly to Step 1 we obtain a holomorphic map D ×D → A. It has to be
constant since D is a torus and A is either (C+)n or C∗.

3. Complex manifolds

This section contains preliminaries, the notation, and the assumptions that will
be used further on.

By a (projective) variety we mean an algebraic variety that is a Zariski closed
subset of a projective space Pn.

Let U ⊂ Cn be an open subset. An analytic subset of U is a closed subset
X ⊂ U such that for any x ∈ X there exist an open neighbourhood x ∈ V ⊂ U and
holomorphic functions f1, . . . , fk : V → C such that X ∩ V = {f1 = 0, . . . , fk = 0}
[31; Definition 1.1.23].

A complex space consists of a Hausdorff topological space X and a sheaf of
rings OX such that (X,OX) is locally isomorphic to an analytic subset Z ⊂ U ⊂ Cn
endowed with the sheaf OU/I, where I is a sheaf of holomorphic functions such
that Z = Z(I) (see [31; Definition 6.2.8]). By Chow’s theorem any closed analytic
subset of complex projective space is a projective variety [28; Chap. V, Section D,
Theorem 7], [74; Proposition 13].
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A complex manifold is a complex space which is locally modelled on Z = U ⊂ Cn
and I = {0} [31; Example 6.2.9]. In particular, it is smooth.

We will use the following notation and assumptions.

Notation and assumptions.
(NA.1) Z, Q, R, C stand for the ring of integers and fields of rational, real, and

complex numbers, respectively.
(NA.2) In what follows, the ground field is C unless indicated otherwise.
(NA.3) Aut(X) stands for the group of all biholomorphic (or biregular, if X is

projective) automorphisms of a complex manifold X. The group Aut(X) of
any connected complex compact manifold X carries the natural structure of
a complex (not necessarily connected) Lie group such that the action map
Aut(X)×X → X is holomorphic (the Bochner–Montgomery theorem [13]).

(NA.4) Aut0(X) stands for the connected identity component of Aut(X) (as
a complex Lie group).

(NA.5) If p : X → Y is a morphism of complex manifolds, then Aut(X)p is the
subgroup of all f ∈ Aut(X) such that p ◦ f = p.

(NA.6) For f ∈ Aut(X) we denote by Fix(f) the set of all fixed points of f .
(NA.7) ∼= stands for “isomorphic groups” (or isomorphic complex Lie groups if

so are the groups involved), and also for isomorphic line bundles; ∼ stands for
biholomorphically isomorphic complex manifolds; ≈ stands for bimeromorphic
or birational complex manifolds.

(NA.8) id stands for the identity automorphism, I stands for an identity matrix.
(NA.9) We say that a subset U of a complex manifold X is analytically Zariski

open if U = X \ Z, where Z is an analytic subspace of X.
(NA.10) Pn(x0:···:xn) stands for Pn with homogeneous coordinates (x0 : · · · : xn).
(NA.11) Cz, Cz ∼ P1 is the complex line (extended complex line, respectively)

with coordinate z.
(NA.12) C+ and C∗ stand for the complex Lie groups C and C∗ with additive

and multiplicative group structure, respectively.
(NA.13) dim(X) and dima(X) are the complex and algebraic dimensions of

a compact complex manifold X, respectively.
(NA.14) We let pr denote the natural projection Y × P1 → Y .
(NA.15) For an element ψ ∈ PSL(2,C) we denote by TD(ψ) the number

TD(ψ) :=
tr(F )2

det(F )
,

where F ∈ GL(2,C) is any representative of ψ, and tr and det stand for the
trace and determinant, respectively.

(NA.16) A rational curve in X is the image of a non-constant holomorphic map
P1 → X.

(NA.17) 1 or 1Y is the trivial holomorphic line bundle Y ×C over a manifold Y .
(NA.18) For a rank 2 holomorphic vector bundle E over Y we write P(E) for the

P1-bundle that is the projectivization of E .
(NA.19) If L is a holomorphic line bundle over Y and E = L⊕ 1Y , then we call
L̄ = P(E) the closure of (the total body of ) L.
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(NA.20) C(Z) stands for the field of rational functions on the irreducible complex
projective variety Z.

(NA.21) Let X,Y be two compact connected irreducible reduced analytic com-
plex spaces. A meromorphic map f : X → Y assigns to every point x ∈ X

a subset f(x) ⊂ Y (the image of x) such that the following conditions are
met:
(a) the graph Gf := {(x, y) | y ∈ f(x) ⊂ X × Y } is a connected irreducible

complex analytic subspace of X × Y with dim(Gf ) = dim(X);
(b) there exists an open dense subset X0 ⊂ X such that f(x) consists of one

point for every x ∈ X0.
(NA.22) The general point x ∈ X is a point in an (analytically) Zariski open

dense subset of X. The general fibre of a holomorphic map f : X → Y is the
preimage f−1(y) of a general point y ∈ Y .

Definition 3.1. Following [25], we define a covering family of rational curves
for a compact complex connected manifold X as a pair of morphisms p : Z → T

and ψ : Z → X of compact irreducible complex spaces if the following conditions
are satisfied:

• ψ is surjective;
• there is a dense analytical Zariski open subset U ⊂ T such that for t ∈ U

the fibre Zt = g−1(t) is isomorphic to P1 and dim(ψ(Zt)) = 1.

Manifolds X admitting a covering family with this property are called uniruled
[25; Definition 2.1 and Lemma 2.2].

Remark 3.2. The Kodaira dimension κ(X) equals −∞ if X is a uniruled com-
pact complex manifold [25; the remark on p. 691], [35; Corollary IV.1.11]. In low
dimensions the converse is true.

Theorem 3.3 ([45] for projective manifolds, [29] for non-projective ones). Let
X be a compact Kähler manifold of dimension at most 3. Then X is uniruled if
and only if κ(X) = −∞.

Remark 3.4 (Fujiki’s theorems). It was proved by A. Fujiki for a compact con-
nected complex manifold Y that

(i) if Y contains no rational curves, then for any complex manifold X every
meromorphic map f : X → Y is holomorphic (see [24]);

(ii) Aut0(Y ) is isomorphic to a complex torus Tor(Y ) (unless it is trivial) if Y is
Kähler and either non-uniruled [23; Proposition 5.10] or with non-negative
Kodaira dimension [23; Corollary 5.11].

The next statement (see [7; Proposition 1.4]) is similar to Lemma 3.1 of [34].

Proposition 3.5. Let X be a connected complex compact Kähler manifold, and
let F = Aut(X)/Aut0(X). Then the group F is bounded.

Remark 3.6. Lemma 3.1 of J.H. Kim [34] states the following.
Let X be a normal compact Kähler variety. Then there exists a positive inte-

ger l, depending only on X, such that for any finite subgroup G of Aut(X) acting
biholomorphically and meromorphically on X we have [G : G ∩Aut0(X)] 6 l.
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We cannot use this lemma straightforwardly, since it is not clear why every finite
subgroup of Aut(X)/Aut0(X) should be isomorphic to G/(G∩Aut0(X)) for some
finite subgroup G of Aut(X).

Corollary 3.7. Let X be a compact connected complex Kähler manifold that
is either non-uniruled or with Kodaira dimension κ(X) > 0. Then Aut(X) is very
Jordan.

Proof. In view of Proposition 3.5 it is sufficient to prove that Aut0(X) is com-
mutative. But this assertion follows from [23; Proposition 5.10] if X is non-uniruled
and from [23; Corollary 5.11] if κ(X) > 0 (see Remark 3.4). The corollary is proved.

In general, let Z be a compact complex connected Kähler manifold. The analogue
of the Chevalley decomposition for algebraic groups is valid for complex Lie group
Aut0(Z):

1 → L(Z) → Aut0(Z) → Tor(Z) → 1 (2)

where L(Z) is bimeromorphically isomorphic to a linear group, and Tor(Z) is a com-
plex torus [23; Theorem 5.5], [40; Theorem 3.12], [16; Theorem 3.28].

Remark 3.8. If L(Z) in (2) is not trivial, Z contains a rational curve. Moreover,
according to [23; Proposition 5.10], Z is bimeromorphic to a fibre space whose
general fibre is P1, that is, X is uniruled.

Chapter 2. Rational bundles

In § 4, we want to persuade the reader that uniruled manifolds (in particular,
P1-bundles) are of special interest from the point of view of Jordan properties. To
this end we give a very brief and certainly non-complete overview of known facts in
this field. In § 5 we provide some general properties of maps of manifolds endowed
with fibration over a non-uniruled base with general fibre P1. In § 6 we deal with
projective non-trivial conic bundles.

4. Uniruled vs non-uniruled: Jordan properties
of the groups Aut(X), Bim(X), and Bir(X)

In order to demonstrate the special role of uniruled manifolds from the point of
view of Jordan properties, we present samples of results on the Jordan properties
of Aut(X) and Bim(X) for various types of compact complex manifolds X.

The group Aut(X) is known to be Jordan if
• X is projective [44];
• X is a compact complex Kähler manifold [34];
• X is a compact complex space in Fujiki’s class C ([43], also [66] for Moishezon

threefolds).

Remark 4.1. For the group Aut(X) “Jordan” implies “strongly Jordan” because
for every compact complex manifold X there is a constant C = C(X) such that

every finite subgroup G ⊂ Aut(X) may be generated by at most C elements.
One can find the proof of this fact in [48; Theorem 1.3]. It is based on the same

property for elementary abelian p-groups that was proved for a much wider class of
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topological spaces in [42], and on group-theoretic arguments (which, according to
the author, had been explained to him by E. Khukhro and A. Jaikin). Thus this
fact is also valid in a much more general situation.

Moreover, the connected identity component Aut0(X) of Aut(X) is Jordan for
every compact complex space X [61; Theorems 5 and 7]. An example of X = E,
where E is an elliptic curve, shows that Aut(X) can be Jordan but not bounded.
A classification of complex compact surfaces with bounded automorphisms group
was done in [69].

As follows from Corollary 3.7, the group Aut(X) is very Jordan for any compact
connected complex Kähler non-uniruled manifold X. For uniruled manifolds the
situation changes: if X = E × P1, then Aut(X) ∼= PSL(2,C) × Aut(E) is neither
bounded nor very Jordan.

The groups Bir(X) and Bim(X) of birational and bimeromorphic transforma-
tions, respectively, are more complicated. Low-dimensional cases are well under-
stood. Consider the following list:

• E, an elliptic curve;
• An, an abelian variety of dimension n;
• Sb, a bielliptic surface;
• SK1, a surface of Kodaira dimension 1;
• SK , a Kodaira surface (it is not a Kähler surface).

Here are examples of results for low-dimensional cases.
(a) If X is a complex compact surface with non-negative Kodaira dimension,

then Bir(X) is bounded unless it appears in the above list [67; Theorem 1.1].
(b) If X is a projective surface, then Bir(X) is Jordan if X is not birational to

a product of an elliptic curve and P1 [58]. (The case of X = P2 was done earlier by
J.-P. Serre [76].)

(c) If X is birational to a product of an elliptic curve and P1, then Bir(X) is not
Jordan [85].

(d) If X is a projective threefold, then Bir(X) is not Jordan if and only if X is
birational to a direct product E×P2 or S×P1, where S is a surface from the above
list [65].

(e) The group Bim(X) is Jordan for any non-uniruled compact complex con-
nected Kähler manifold of dimension 3 (see [70], [26]).

(f) If X is a non-algebraic uniruled compact Kähler threefold with non-Jordan
group Bim(X), then X is bimeromorphic to P(E) for a holomorphic rank 2 vector
bundle E on a two-dimensional complex torus S with a(S) = 1. Moreover, if
a(X) = 2, then X ≈ S × P1 (see [68]).

The following theorem for complex projective varieties was proved by Yu. Prokho-
rov and C. Shramov (for dim(X) > 3 under the assumption of the so-called BAB-
conjecture, named after A. Borisov, L. Borisov, and V. Alexeev), and C. Birkar
(who proved this conjecture) [62; Theorem 1.8], [10].

Theorem 4.2. Let X be a projective variety of dimension n. Then the following
hold:

(i) the group Bir(X) has bounded finite subgroups provided that X is non-uni-
ruled and has irregularity q(X) = 0;
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(ii) the group Bir(X) is Jordan provided that X is non-uniruled;
(iii) the group Bir(X) is Jordan provided that X has irregularity q(X) = 0.

Here q(X) = dimC H
1(X,OX) is the irregularity of X. In particular, the Cre-

mona group Crn of any rank n is Jordan [63]. The exact value of JCr2 is 7200
(E. Yasinsky [84]). The Jordan constant for Bir(X) for a rationally connected
threefold X may be found in [64].

Let us sketch the proof of assertions (i) and (ii) of Theorem 4.2.
First, using the MMP (Minimal Model Program) the authors reduce the prob-

lem to considering the group PAut(Xm), where Xm is a special (relatively minimal)
model of X and PAut(Z) stands for the group of birational self-maps of a variety Z
that are isomorphisms in codimension 1. This means that f ∈ PAut(Xm) moves
a divisor to a divisor and induces an automorphism f∗ = ψ(f) of the finitely gen-
erated abelian group NSW (Xm) = Cl(Xm)/Cl0(Xm), were Cl(Xm) stands for the
group of Weil divisors on Xm modulo linear equivalence and Cl0(Xm) consists of
those Weil divisors that are algebraically equivalent to zero.

Thus there is a short exact sequence

0 → Gi
i−→ G

ψ−→ Aut(NSW (X)), (3)

where Gi = ker(ψ) acts on each equivalence class in Cl(Xm). Since NSW (Xm) is
a finitely generated abelian group, Aut(NS(X)) is bounded.

Take a very ample divisor L and denote by ClL(Xm) the equivalence class con-
taining L. It is an abelian variety of dimension q(Xm) = q(X).

Let GL be the kernel of the action of Gi on ClL(Xm). Then there is a short
exact sequence

0 → GL → Gi → Gab, (4)

where Gab ⊂ Aut(ClL(Xm)) is a subgroup of automorphisms (as a variety, but not
as a group) of the abelian variety ClL(Xm). The group Aut(ClL(Xm)) is strongly
Jordan. Let V be a linear space of sections of L and P(V ) be its projectivization.
Let FL be the subgroup of those linear transformations of the projective space
P(V ) that preserve Xm ⊂ P(V ). Since FL is a linear group and X (and also Xm)
is non-uniruled, FL has to be finite (see Remark 3.8). Thus GL ⊂ FL is finite.

Therefore,
• if q(X) = 0, then Gab is trivial and Bir(Xm) is bounded (see Remark 2.9(i));
• if q(x) > 0, then Gi is Jordan (see Remark 2.9(iv)) and Bir(X)m is Jordan

(see Remark 2.9(iii)).

Remark 4.3. (i) One can ask similar questions about the group Diff(M) of all dif-
feomorphisms of a smooth manifold M . There was the conjecture of E. Ghys (1997):

If M is a compact smooth manifold, then Diff(M) is Jordan.
It was answered negatively by B. Csikós, L. Pyber, E. Szabó in [19], whose ap-

proach was based on an algebraic geometry construction from [85] (see also Chap-
ter 3 below).

In works of J. Winkelmann [83] and V. Popov [60] it was proved that there
is a connected non-compact Riemann surface M such that Aut(M) contains an
isomorphic copy of every finitely presented (in particular, every finite) group G.
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In particular, Diff(M) is not Jordan. B. Zimmerman [88] proved that if M is
compact and dim(M) 6 3, then Diff(M) is Jordan. The Jordan properties of
Diff(M) were deeply studied by I. Mundet i Riera [47], [49]–[53]. It was proved
there, in particular, that Diff(M) is Jordan if M is one of the following:

• an open acyclic manifold;
• a compact manifold (possibly with boundary) with non-zero Euler charac-

teristic;
• a homology sphere.

(ii) The question on the Jordan properties of algebraic groups over various fields
was considered in [61], [44], and [80] (see also [5]).

(iii) Jordan properties of Aut(X) and Bir(X) for open subsets of certain projec-
tive P1-bundles were considered in [4] and [6].

(iv) In the case of algebraic varieties X over algebraically closed fields of prime
characteristic p one should not expect the Jordan properties to hold (see Exam-
ple 2.7). However, there are analogues of several important results over C that
deal instead with p-Jordan properties (see Remark 2.8) of Aut(X) and Bir(X)
[30], [17], [36]. On the other hand, it is known that the Cremona group of rank 2
over a finite field is Jordan [71].

For compact complex manifolds, roughly speaking, from Jordan properties point
of view the uniruled varieties are the worst and may be divided in several categories.

First, manifolds X that are rationally connected (or with q(X) = 0). For pro-
jective varieties, thanks to Theorem 4.2, Bir(X) is Jordan.

Second, manifolds that are fibred over a non-uniruled base Y with rationally
connected fibres, with q(X) ̸= 0, and that are not bimeromorphic (birational) to
a direct product Y × PN . In many special cases Bim(X) (or Bir(X)) is Jordan.
Moreover, Aut(X) appears often to be very Jordan. We discuss some of these
special cases in Chapter 4.

Third, X is isomorphic (bimeromorphic) to the direct product Y × PN . If Y
is a torus, and a(Y ) > 0, then Bir(Y ) is not Jordan. This case is the subject of
Chapter 3.

5. Rational bundles

In this section we provide some useful facts about P1-bundles and their mor-
phisms. We start with a slightly more general construction.

Definition 5.1. We say that a triple (X, p, Y ) is a rational bundle over Y if
(a) X, Y are compact connected complex manifolds endowed with a holomorphic

surjective map p : X → Y ;
(b) for a general y ∈ Y the fibre p∗(y) is reduced and isomorphic to P1 (where

general means “lying outside a proper analytic subset of Y ”; see (NA.20)
in § 3);

(c) If dim(Py) = 1 for every y ∈ Y , where Py := p−1(y), then we call (X, p, Y )
an equidimensional rational bundle over Y .

If for an open subset U ⊂ Y and every y ∈ U the fibre Py ∼ P1, then, by
a theorem of W. Fischer and H. Grauert [22], p−1(U) ⊂ X is a holomorphically
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locally trivial fibre bundle over U . If U = X, then the triple (X, p, Y ) is a P1-bundle
over Y .

If (X, p, Y ) is a rational bundle over a non-uniruled Kähler manifold Y , then
p : X → Y is by definition a maximal rationally connected (MRC) fibration of X
(for the definition and discussion, see [15; Theorem 2.3, Remark 2.8] and [35; IV.5]).

Bimeromorphic self-maps preserve the MRC fibration. This is a well-known fact,
but we have not found a suitable reference for the proof of this fact in the complex
analytic case. We provide it here. In the case when the Kodaira dimension satisfies
κ(Y ) > 0, the desired result follows from [41; Theorem 1.1.5]. For automorphisms
the detailed exposition may be found in [1; § 2.4].

Lemma 5.2. Let X , Y , and Z be three complex compact connected manifolds,
and let p : X → Y and q : X → Z be surjective holomorphic maps. Assume that

• Z is non-uniruled;
• there is an analytical Zariski open dense subset U ⊂ Y such that Pu =
p−1(u) ∼ P1 for every u ∈ U .

Then there is a meromorphic map τ : Y 99K Z such that τ ◦ p = q , that is, the
following diagram commutes:

X
p

~~~~
~~

~~
~

q

  @
@@

@@
@@

Y
τ //_______ Z

Proof. Let Φ: X → Y × Z be defined by Φ(x) = (p(x), q(x)). The image
T = Φ(X) is an irreducible compact analytic subspace of Y × Z (see, for example,
[54; Chap. VII, Theorem 2]). We denote by prY and prZ the natural projections
of T onto the first and second factor, respectively. Both projections are evidently
surjective. The set

T1 = {(y, z) ∈ T | dim(Φ−1(y, z)) > 0}

is an analytic subset of T ⊂ Y ×Z ([73], [21; Theorem 3.6, p. 137]). Its projections
TY = prY (T1) ⊂ Y and TZ = prZ(T1) ⊂ Z onto the first and the second factor are
analytic subsets of Y and Z, respectively ([73], [54; Chap. VII, Theorem 2]).

If TY ̸= Y , then V := (Y \ TY ) ∩ U is an analytical Zariski open dense subset
of Y . For each y ∈ V we have p−1(y) ∼ P1 and dim(q(p−1(y))) > 0. Thus the pair
p : X → Y , q : X → Z would provide a covering family for Z, which is impossible,
since Z is not uniruled. Thus TY = Y .

Take u ∈ U . Since TY = Y , there is z ∈ Z such that

(u, z) ∈ T and dim Φ−1(u, z) > 1.

Moreover,
Φ−1(u, z) = {x | p(x) = u, q(x) = z} ⊂ Pu ⊂ X.

Since Pu ∼ P1 and dim(Φ−1(u, z)) > 1, we have Pu = Φ−1(u, z). Hence q|Pu
= z

for every u ∈ U and some z ∈ Z and there is only one z ∈ Z such that (u, z) ∈ T .
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Thus,
(a) T is an irreducible connected subset of Y × Z;
(b) dim(T ) = dim(Y );
(c) for every u ∈ U there is only one z ∈ Z such that (u, z) ∈ T .

It follows that T is the graph of a meromorphic map, which we denote by τ .

Remark 5.3. The fact that q contracts every fibre of p over an analytical Zariski
open non-empty subset of Y is proved in [27; Proposition 6.2].

Lemma 5.4. Let (X, pX , Y ) and (W,pW , Y ) be two rational bundles over a non-
uniruled (compact connected) manifold Y . Let f : X →W be a surjective meromor-
phic map.

Then there exists a meromorphic map τ(f) : Y → Y that can be included in the
following commutative diagram:

X

pX

��

f // W

pW

��
Y

τ(f) // Y

(5)

In addition, if f is holomorphic, so is τ(f).

Proof. Let a : X̃ → X be a modification of X such that the following diagram
is commutative:

X̃
a

��~~
~~

~~
~

b

  @
@@

@@
@@

@

X
f //_______ W

where b : X̃ →W is a holomorphic map (it always exists: see [56; Theorem 1.9]).
Consider the holomorphic maps

p̃X := pX ◦ a : X̃ → Y and f̃ := pW ◦ b : X̃ → Y.

We apply Lemma 5.2 to X̃, Y = Z and p̃X : X̃ → Y , f̃ : = X̃ → Y and obtain the
needed map τ(f) ∈ Bim(Y ) which can be included in the following commutative
diagram:

X̃
a

~~}}
}}

}}
}} b

  @
@@

@@
@@

@

X

prX

��

____ f //___ W

prW

��
X

τ(f) // Y

If f is holomorphic, then one can take X̃ = X and U = Y (in the notation of
Lemma 5.2). Then τ(f) will be defined at every point of Y .
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Corollary 5.5. For a rational bundle (X, p, Y ) over a non-uniruled (complex
connected compact) manifold Y there are natural group homomorphisms

τ : Aut(X) → Aut(Y ) and τ̃ : Bim(X) → Bim(Y )

such that
p ◦ f = τ(f) ◦ p, p ◦ f = τ̃(f) ◦ p

for every f ∈ Aut(X) or f ∈ Bim(X), respectively.

Remark 5.6. If Y is Kähler non-uniruled, then the restriction group homomor-
phism

τ |Aut0(X) : Aut0(X) → τ(Aut0(X))

is a holomorphic homomorphism of complex Lie groups and τ(Aut0(X)) is a closed
complex Lie subgroup of Aut(Y ) (A. Fujiki [23; Lemma 2.4, 3), Theorem 5.5, and
Lemma 4.6]).

In what follows we use heavily the following classical theorems.

Theorem 5.7 (Remmert–Stein theorem; see, for example, [54; Chap. VII, The-
orem of Remmert–Stein]). Let X be a complex space, Y be an analytic subset of X ,
and A be an analytic subset of X \ Y . Suppose that there is an integer p > 0 such
that dim(Y ) 6 p − 1, while dima(A) > p for any a ∈ A (dim(Y ) 6 −1 means that
Y = ∅). Then the closure Ā of A in X is an analytic set in X .

Theorem 5.8 (Riemann’s second removable singularity theorem; [21; Chap. 2,
Appendix]). Assume that X is a complex manifold and A ⊂ X is an analytic subset
such that

codimx(A) > 2 for every x ∈ X.

Then any holomorphic function f : X \A→ C has a unique holomorphic extension
f̃ : X → C.

Theorem 5.9 (Levi’s continuation theorem; [39], see also [54; Chap. VII, The-
orem 4] or [21; § 4.8]). Let X be a normal complex space and Y be an analytic
subset of X such that for any a ∈ X we have dima(Y ) 6 dima(X) − 2. Then any
meromorphic function on X \Y has an extension to a meromorphic function on X .

Remark 5.10. It follows from the Riemann’s second theorem that a holomor-
phic map from f : X \ Σ → Z where X is a complex manifold, Σ is an analytic
subset of codimension at least 2, and Z ⊂ CN is an affine complex set, can be
extended to a holomorphic map f̃ : X → Z.

Indeed, let z1, . . . , zN be coordinates in CN . The map f consists of N holo-
morphic functions zi(x), i = 1, . . . , N , defined on X \ Σ. By Theorem 5.8 the
functions zi can be extended to holomorphic functions z̃i defined on X. Since Z is
a closed subset of CN , we have f̃(x) = (z̃1(y), . . . , z̃N (x)) ∈ Z for every x ∈ X.

This fact is a particular case of the extension theorem due to A. Andreotti and
W. Stoll [2]. Recall that a subset M ⊂ X of a complex space X is thin if in
a neighbourhood of every point m ∈ M it is contained in an analytic subset of
codimension 1.



AUTOMORPHISM GROUPS OF P1-BUNDLES 19

Theorem 5.11 (Andreotti–Stoll theorem). Let τ : A→ Y be a holomorphic map
of the open subset A of a normal complex space X into a Stein space Y . Let
M := X \ A be a thin set. If M has topological codimension at least 3, then τ can
be extended to a holomorphic map of X into Y .

We use this fact to prove the following lemma.

Lemma 5.12. Let (X, p, Y ) and (Z, q, Y ) be two P1-bundles over a connected
complex manifold Y . Let Σ ⊂ Y be an analytic subset of codimension at least 2, and
let U = Y \ Σ, VX = p−1(U), and VZ = q−1(U). Let f : X → Y be a meromorphic
map such that q ◦ f = p and the induced map f : VX → VZ is an isomorphism.
Then f : X → Z is a biholomorphic isomorphism.

Proof. By construction, for every u ∈ U the map f induces an isomorphism
f |Py

: Py → Qy, where Py = p−1(y) and Qy = q−1(y). Consider a point s ∈ Σ and
an open neighbourhood Us of it such that there are isomorphisms ψX : p−1(Us) →
Us × P1 and ψZ : q−1(Us) → Us × P1 compatible with the projection maps p and q,
respectively. Then for every y ∈ Us∩U we have an element of PSL(2,C) representing
f |Py

: Py → Qy, which is an automorphism of P1. Thus we have a holomorphic map
Us ∩ U → PSL(2,C). Since the target space is an affine set, this map extends
to a holomorphic map Us → PSL(2,C). Hence we have an extension of f to an
isomorphism f̃s : p−1(Us) → q−1(Us), which coincides with f in VX ∩ p−1(Us),
hence everywhere.

Lemma 5.13. Let (X, p, Y ) and (Z, q, Y ) be two P1-bundles over a compact con-
nected complex manifold Y with dim(Y ) = n. Let Σ ⊂ Y be an analytic subset
of codimension at least 2, and let U = Y \ Σ, VX = p−1(U), and VZ = q−1(U).
Let f : VX → VZ be a meromorphic map such that q ◦ f = p. Then there exists
a meromorphic map f̃ : X → Y such that f̃

∣∣
U

= f and q ◦ f̃ = p.

For Kähler manifold Y this lemma is a consequence of the following general
theorem of Y.-T. Siu [81].

Theorem 5.14 (Siu’s extension theorem). Let X be a complex manifold, A be
a subvariety of codimension at least 1 in X , and G be an open subset of X which
intersects every branch of A of codimension 1. If M is a compact Kähler mani-
fold, then every meromorphic map f from (X − A) ∪ G to M can be extended to
a meromorphic map from X to M .

At this stage we do not require that Y (and, a fortiori, Z) be Kähler, but we use
the fact that X and Z are P1-bundles.

Proof of Lemma 5.13. Consider the fibre product

W = X ×Y Z = {(x, z) ∈ X × Z | p(x) = q(z)} ⊂ X × Z

and its subsets

Γf = {(x, z) ∈ VX × VZ | p(x) = q(z), z ∈ f(x)} ⊂W,

Σ̃ = {(x, z) ∈ X × Z | p(x) = q(z) ∈ Σ} ⊂W.
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By construction dim(Σ̃) 6 n and dim(Γf ) = dim(X) = n + 1. Thus, according to
the Remmert–Stein theorem (Theorem 5.7) the closure Γf of Γf in W is an analytic
subset of W . Let U1 ⊂ U be an open subset such that f is defined at every point
of V1 := p−1(U1). We have

• Γf is an irreducible (since Γf , being the graph of a meromorphic map, is
irreducible) analytic subset of X × Z;

• dim(Γf ) = dim(X);
• for every v ∈ V1 there is unique z ∈ Z such that (v, z) ∈ Γf ;
• the natural projection τ : Γf → X is proper, since both sets are compact.

It follows that Γf is a graph of a meromorphic map f̃ : X → Z (see [3; p. 75]).

We also use the following lemma.

Lemma 5.15. Assume that Y is a compact connected complex manifold, Σ ⊂ Y

is an analytic subset of codimension at least 2, and let U = Y \ Σ. Let (L, π, Y ) be
a holomorphic line bundle over Y such that L|U is trivial. Then L is trivial.

Proof. Indeed, V := π−1(U) ∼ U×Cz, thus z = F (v) is a holomorphic function
on V . The set Σ̃ := π−1(Σ) has codimension at least 2 in L. By Riemann’s second
removable singularity theorem (Theorem 5.8) F can be extended to a holomorphic
function F on L. Thus we have a holomorphic map Φ: L → Y × Cz, x ∈ L →
(p(x), F (x)), which is an isomorphism outside Σ̃. Let S be the set of all points in
L where the differential dΦ of Φ does not have the maximum rank. The sets S
and S̃ = p(S) are analytic subsets of L and Y , respectively (see, for instance, [54;
Chap. VII, Theorem 2], [57; Theorem 1.22], and [73]). Moreover, codim(S̃) = 1
(see [72]). But S̃ ⊂ Σ, hence S̃ = ∅. It follows that Φ is an isomorphism.

6. Non-trivial rational bundles

In this section we consider non-trivial P1-bundles over a non-uniruled base. It ap-
pears that the fact that X ̸≈ Y ×P1 imposes significant restrictions on the structure
of the groups Aut(X) and Bim(X). We start with the projective case.

Definition 6.1. A regular surjective map f : X → Y of smooth irreducible
projective complex varieties is a conic bundle over Y if there is a Zariski open dense
subset U ⊂ Y such that the fibre f−1(y) ∼ P1 for all y ∈ U .

The generic fibre of f is an irreducible smooth projective curve Xf over the field
K := C(Y ) such that its field of rational functions K(Xf ) coincides with C(X).
(The genus of Xf is 0.)

Theorem 6.2 [5]. Let X be a conic bundle over a non-uniruled smooth irre-
ducible projective variety Y with dim(Y ) > 2. If X is not birational to Y ×P1 , then
Bir(X) is strongly Jordan.

Let us sketch the proof of Theorem 6.2.
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Let f : X → Y be a conic bundle and assume that Y is non-uniruled. Ac-
cording to Corollary 5.5, every φ ∈ Bir(X) is fibrewise: there is a homomor-
phism τ̃ : Bir(X) → Bir(Y ) such that τ̃(φ) ◦ f = f ◦ φ:

X

f

��

φ // X

f

��
Y

τ̃(φ) // Y

It follows that there is an exact sequence of groups

0 → BirC(Y )(Xf ) → Bir(X) → Bir(Y ). (6)

Since Y is non-uniruled, the group Bir(Y ) is strongly Jordan thanks to Theo-
rem 4.2 (see also [5; Corollary 3.8 and its proof]).

Let us compute BirK(Xf ). We have:
1) BirK(Xf ) = Aut(Xf ) since dim(Xf ) = 1;
2) since X ̸≈ Y × P1, the genus 0 curve Xf has no K-points and therefore there

exists a ternary quadratic form

q(T ) = a1T
2
1 + a2T

2
2 + a3T

2
3

over K such that
(a) all the ai are non-zero elements of K,
(b) q(T ) = 0 if and only if T = (0, 0, 0) (this means that q is anisotropic),
(c) Xf is biregular over K to the plane projective quadric

Xq := {(T1 : T2 : T3) | q(T ) = 0} ⊂ P2
K ;

3) K is a field of characteristic zero that contains all roots of unity.
Now we consider a quadric, that is, a hypersurface in a projective space defined

by one irreducible quadratic equation over K. It is anisotropic if it has no point
defined over K. The following theorem was proved in [5].

Theorem 6.3 [5]. Suppose that K is a field of characteristic zero that contains
all roots of unity, let d > 3 be an odd integer, V be a d-dimensional K-vector space,
and q : V → K be a quadratic form such that q(v) ̸= 0 for all non-zero v ∈ V .
Consider the projective quadric Xq ⊂ P(V ) defined by the equation q = 0, which is
a smooth projective irreducible (d− 2)-dimensional variety over K . Let Aut(Xq) be
the group of biregular automorphisms of Xq . Let G be a finite subgroup of Aut(Xq).
Then G is commutative, all its non-identity elements have order 2, and the order
of G divides 2d−1 .

Thus, if G is a non-trivial finite subgroup of Aut(Xf ), then either G ∼= Z/2Z or
G ∼= (Z/2Z)2.

Now applying Remark 2.9(iv), from (6) we get that Bir(X) is Jordan.

Remark 6.4. Actually, in Theorem 6.2 the variety X is considered as a pointless
(X(K) = ∅) rational curve defined over a field K, where K contains all roots of
unity. “Pointless surfaces” were studied by C. Shramov and V. Vologodsky in [79]
and [80].
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For complex compact manifolds the absence of points in the generic fibre has to
be reformulated in terms of sections.

Let (X, p, Y ) be a rational bundle over a compact complex connected non-uniru-
led manifold Y (see Definition 5.1), that is,

• X and Y are compact connected manifolds;
• Y is non-uniruled;
• p : X → Y is a surjective holomorphic map;
• p−1(U) is a holomorphic locally trivial fibre bundle over a dense analyti-

cal Zariski open subset U ⊂ Y with fibre P1 and with the corresponding
projection map p : p−1(U) → U .

According to Lemma 5.4, every map f ∈ Bim(X) maps the general fibre of p to
a fibre of p. Let

Aut(X)p = {f ∈ Aut(X) | τ(f) = id}, Bim(X)p = {f ∈ Bim(X) | τ̃(f) = id}

be the kernels of τ and τ̃ , respectively.
Then we have the following short exact sequences:

0 → Aut(X)p → Aut(X) τ−→ Aut(Y ), (7)

0 → Bim(X)p → Bim(X) τ̃−→ Bim(Y ). (8)

Definition 6.5. Let (X, p, Y ) be an equidimensional rational bundle over a com-
pact complex connected non-uniruled manifold Y . We call an irreducible analytic
subspace D of X an almost section if the intersection number (D,F ) of D with
a fibre F = p−1(y), y ∈ Y , is 1.

Remark 6.6. For f ∈ Bim(X)p let S̃f be the indeterminacy locus of f , which
is an analytic subspace of X of codimension at least 2 [73; p. 369]. Let Sf =
p(S̃f ), which is an analytic subset of Y [73], [54; Chap. VII, Theorem 2]. Since the
dimension of a fibre of p is one, Y \Sf is an analytical Zariski open dense subset U
of Y . Hence the restriction f |Py

of f to the fibre Py = p−1(y) of p over a general
point y ∈ Y belongs to Aut(Py). Thus f induces an automorphism of V = p−1(U)
onto itself.

Let D be an almost section of X.
(i) Let a : X̃ → X be such a modification of X that the following diagram is

commutative:
X

a

~~}}
}}

}}
}

b

  A
AA

AA
AA

X
f //_______ X

where b : X̃ → X is a holomorphic map (it always exists [56; Theorem 1.9]). Then
f(D) = ba−1(D) is an analytic subset ([73], [21; Theorem 3.6]) which is a union of
finite number of irreducible components D1, . . . , Dn.

(ii) We may assume (maybe after shrinking U) that D meets every fibre Py,
y ∈ U , at precisely one point. Then f(D) also meets Py, y ∈ U , at precisely one
point.
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(iii) It follows from (ii) that precisely one irreducible component of f(D), say,
D1, meets a fibre Py, y ∈ U . The intersection D1 ∩ Py, y ∈ U , consists of a unique
point.

Thus D1 is an almost section. It follows that the image of an almost section
under f ∈ Bim(X)p contains precisely one almost section. In particular, f cannot
contract an almost section.

Similarly, if Φ: X → Z is a bimeromorphic map of a P1-bundle (X, p, Y ) to
a P1-bundle (Z, q, Y ) such that q ◦ Φ = p, then the image of an almost section
contains an almost section.

The following results were proved by Yu. Prokhorov and C. Shramov in a more
general setting. We formulate below an application of these results to the case of
P1-bundles.

Theorem 6.7. Let (X, p, Y ) be a P1-bundle over a compact complex connected
non-uniruled manifold Y . Let Py = p−1(y) be a fibre of p over a general point
y ∈ Y . Then the following hold.

1) Every countable union of finite subgroups of Bim(X)p can be embedded into
Bim(Py) [68; Lemma 4.1].

2) If X is Kähler, then Bim(X)p is Jordan [68; Corollary 4.3].
3) If there exists an almost section D on X , then X ∼ P(E) for some rank 2

holomorphic vector bundle E on Y [78; Lemma 3.5].
4) Assume that no almost section exists on X . Assume that Bim(Y ) is strongly

Jordan. Then Bim(X) is Jordan [78; Corollary 5.8].
5) If there exists f ∈ Bim(X)p of finite order d > 2, then there exist at least two

distinct almost sections on X . If f is biholomorphic, these almost sections
can be chosen to be disjoint. (See [78; Lemma 4.1].)

To this we add the following lemma.

Lemma 6.8. In the notation of Theorem 6.7, assume that there exists precisely
one almost section on X . If Bim(Y ) is Jordan, so is Bim(X).

Proof. Assume that D is the only almost section. Let f ∈ Bim(X)p, f ̸= id.
The set f(D) contains an irreducible component D1 that is an almost section (see
Remark 6.6). Therefore, D = D1 and D is contained in the set Fix(f) of fixed
points of f . Let V ⊂ Y be an analytical Zariski open dense subset such that the
restriction fv of f to the fibre Pv is a non-identical automorphism of Pv for all
v ∈ V . Since fv has at most two fixed points, we have the following alternative:

• either Fix(f) ∩ Pv = D ∩ Pv contains one point and fv has infinite order;
• or (Fix(f)∩Pv) \ (D∩Pv) contains a point for the general v ∈ V and Fix(f)

contains an almost section distinct from D, which is impossible.
Thus, every element f ∈ Bim(X)p different from id has infinite order. Therefore,

G ∩ Bim(X)p = {id} for every finite group G ⊂ Bim(X) and τ̃ : G → Bim(Y ) is
a group embedding. Hence the Jordan index JBim(X) 6 JBim(Y ).

The opposite case, when the P1-bundle has many almost sections, is when X ∼=
Y × P1. It is considered in the next chapter.
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Chapter 3. P1-bundles over complex tori

In this chapter we deal with P1-bundles of special type, namely, (L̄, p, T ), where
L is a holomorphic line bundle over a complex torus T and L̄ = P(L ⊕ 1T ). Most
examples of compact complex connected manifolds with non-Jordan group Bim(X)
(at least for dimensions greater than 3) are P1-bundles of this type. Manifolds of
this type were studied by one of the authors in [85] (the projective case) and [87]
(the non-algebraic case). The goal of this chapter is to present a unified approach
for both situations. It is based on a construction motivated by symplectic geometry
and inspired by an algebraic approach to theta functions developed in [46]. The
chapter starts with symplectic constructions, then theta groups follow, and then we
arrive at the description of certain subgroups of Bim(L̄).

7. Symplectic group theory

This section contains elementary but useful facts about Jordan properties of
central extensions of commutative groups by C∗.

Consistent with the tradition, some groups are written in the multiplicative and
some in the additive form. We hope that no confusion will arise.

Definition 7.1. A symplectic pair is a pair (A, e) that consists of a commutative
group A and an alternating bilinear pairing

e : A×A→ C∗.

Here alternating means that

e(a, a) = 1 ∀a ∈ A.

Bilinearity means that

e(a1 + a2, b) = e(a1, b)e(a2, b),

e(a, b1 + b2) = e(a, b1)e(a, b2)
∀a, a1, a2, b, b1, b2 ∈ A.

These properties imply that for all a, b ∈ A

1 = e(a+ b, a+ b) = e(a, a)e(a, b)e(b, a)e(b, b) = e(a, b)e(b, a),

that is,
e(a, b) = e(b, a)−1 ∀a, b ∈ A.

As usual, e gives rise to the group homomorphism

Ψe : A→ Hom(A,C∗), b 7→ {Ψe(b) : A→ C∗, a 7→ e(a, b)}. (9)

A subgroup B of A is called isotropic with respect to e if

e(B,B) = {1}.

We define the kernel of e by

ker(e) := {a ∈ A | e(a,A) = {1}} = ker(Ψe);

this is a subgroup of A, which is isotropic with respect to e.
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We say that e is non-degenerate if ker(e) = {0}, that is,

Ψe : A→ Hom(A,C∗)

is an injective homomorphism. If e is non-degenerate, then we call (A, e) a non-de-
generate symplectic pair.

Example 7.2. Let d be a positive integer, let Sd = ( 1
dZ/Z)2 ∼= (Z/dZ)2, and let

ed : Sd × Sd → C∗, (a1 + Z, b1 + Z), (a2 + Z, b2 + Z) 7→ exp(2πid(a1b2 − a2b1)).

Then (Sd, ed) is a non-degenerate symplectic pair.

Remark 7.3. Let (A1e1) and (A2, e2) be non-degenerate symplectic pairs. Con-
sider the bilinear alternating form

e1e2 : (A1 ⊕A2)× (A1 ⊕A2) → C∗,
(a1, a2), (b1, b2) 7→ e1(a1, b1) · e2(a2, b2).

Then (A1 ⊕A2, e1e2) is a non-degenerate symplectic pair.

Remark 7.4. If (A, e) is a symplectic pair and B is a subgroup of A, then
(B, e|B) is also a symplectic pair. Here e|B is the restriction of e to B ×B.

Remark 7.5. (i) Each symplectic pair (A, e) gives rise to a non-degenerate sym-
plectic pair (Ā, ē), where

Ā = A/ ker(e), ē(a ker(e), b ker(e)) = e(a, b) ∀a, b ∈ A. (10)

(ii) Clearly, a subgroup B of A is isotropic with respect to e if and only if its
image B̄ in Ā is isotropic with respect to ē. In particular, B is isotropic if and only
if B + ker(e) is isotropic.

(iii) Let B be a subgroup of A. One can restate the property of B to be isotropic
with respect to e as follows. The composition of Ψe : A → Hom(A,C∗) with the
restriction map Hom(A,C∗) → Hom(B,C∗) is a group homomorphism

A
Ψe−−→ Hom(A,C∗) → Hom(B,C∗). (11)

Clearly, the kernel B⊥ of this homomorphism (which is the orthogonal complement
of B in A with respect to e) contains B if and only if B is isotropic.

(iv) Suppose that B coincides with B⊥. This means that if a ∈ A \ B, then
e(B, a) ̸= {1}. In other words, B is a maximal isotropic subgroup of A with respect
to e.

Conversely, suppose that B is a maximal isotropic subgroup of A with respect
to e. Since B is isotropic, it follows that

B ⊂ B⊥ ⊂ A, e(B⊥, B) = {1}.

If B⊥ ̸= B, then there is a ∈ B⊥ \ B such that e(a,B) = {1}. This implies that
the subgroup B1 of A generated by B and a is isotropic, which contradicts the
maximality of B.

It follows that B = B⊥ if and only if B is a maximal isotropic subgroup of A.
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Remark 7.6. Suppose thatA is finite. Then the finite groupsA and Hom(A,C∗)
are (non-canonically) isomorphic; in particular, they have the same order. It follows
that in the case of finite A the pairing e is non-degenerate if and only if Ψe is a group
isomorphism.

Lemma 7.7 (useful lemma). Let (A, e) be a symplectic pair such that A/ ker(e)
is a finite group. If B is a maximal isotropic subgroup of A, then the index [A : B]
equals

√
#(A/ ker(e)). In particular, if e is non-degenerate, then

[A : B] =
√

#(A) = #(B).

Proof. In light of Remark 7.5, B contains ker(e) and therefore it suffices to
prove the desired result for non-degenerate (Ā, ē) (instead of (A, e)). In other words,
without loss of generality, we may assume that ker(e) = {0}, that is, A = Ā is finite
and e = ē is non-degenerate.

Since C∗ is a divisible group, every group homomorphism B → C∗ extends to
a group homomorphism A→ C∗. This means that the restriction map

Hom(A,C∗) → Hom(B,C∗)

is surjective. Since A is finite, the non-degeneracy of emeans (in light of Remark 7.6)
that Hom(A,C∗) = Ψe(A). On the other hand the maximality of B means that the
kernel of the surjective composition

A
Ψe∼= Hom(A,C∗) � Hom(B,C∗)

coincides with B (see Remark 7.5), and therefore there is an injective group homo-
morphism

A/B ↪→ Hom(B,C∗),

which is also surjective and therefore is an isomorphism. This implies that

#(A/B) = #
(
Hom(B,C∗)

)
= #(B),

which finishes the proof if we take into account that #(A/B) = #(A)/#(B).

Remark 7.8. Suppose that ker(e) is either finite or divisible. Then every finite
subgroup B̄ of Ā is the image of a finite subgroup B ⊂ A under A � Ā. Indeed, if
ker(e) is finite, then one can take as B the preimage of B̄ in A. If ker(e) is divisible,
then it is a direct summand of A, that is, A splits into a direct sum A = ker(e)⊕A′
and the map A → Ā induces an isomorphism A′ ∼= Ā. Now one can take as B the
(isomorphic) preimage of B̄ in A′.

Definition 7.9. A symplectic pair (A, e) is called almost isotropic if there exists
a positive integer D that enjoys the following property.

Each finite subgroup B of A contains an isotropic (with respect to e) subgroup A
such that the index [B : A] 6 D. The smallest D with this property is called the
isotropy defect of (A, e) and denoted by DA,e.

Example 7.10. If e≡1, then every subgroup is isotropic, and thereforeDA,e= 1.
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Remark 7.11. Suppose that ker(e) is either finite or divisible.
(i) It follows from Remarks 7.8 and 7.5 that (A, e) is almost isotropic if and only

if (Ā, ē) is almost isotropic. In addition, if this is the case, then

DA,e = DĀ,ē. (12)

Indeed, let A be a finite subgroup of A and B be an isotropic subgroup of largest
possible order in A. In particular, B is a maximal isotropic subgroup of A. Since
B1 = B+(A∩ker(e)) is an isotropic subgroup of A that contains B, the maximality
of B implies that B1 = B, that is, B ⊃ A ∩ ker(e). This implies that the index
(A : B) equals the index [Ā : B̄] where the subgroups Ā and B̄ are the images in Ā
of A and B, respectively. Taking into account that B̄ is an isotropic (with respect
to ē) subgroup of the finite group Ā ⊂ Ā, we conclude that

DA,e > DĀ,ē.

Conversely, suppose that B̄ is an isotropic (with respect to ē) subgroup of max-
imum order of a finite group Ā ⊂ Ā. As above, this implies that B̄ is a maximal
isotropic subgroup of Ā. By Remark 7.8, A contains a finite subgroup A whose
image in Ā coincides with Ā. Let B the preimage of B̄ in A. Then B is isotropic
with respect to e and the index [A : B] coincides with the index [Ā : B]. This
implies that

DA,e 6 DĀ,ē,

which ends the proof.
(ii) Assume additionally that Ā is finite. Applying Lemma 7.7 to subgroups of Ā

and using (12) we conclude that

DA,e = DĀ,ē =
√

#(Ā). (13)

Definition 7.12. A theta group attached to a symplectic pair (A, e) is a groupG
that sits in a short exact sequence

1 → C∗ i−→ G
j−→ A→ 0 (14)

that enjoys the following properties.
The image of C∗ is a central subgroup of G, and the alternating commutator

pairing

A×A→ C∗, j(g1), j(g2) 7→ i−1(g1g2g−1
1 g−1

2 ) ∈ C∗ ∀g1, g2 ∈ G,

attached to the exact sequence (14) coincides with e.

Remark 7.13. Every central extension G of a commutative group A by C∗
gives rise to the symplectic pair (A, e) where e(a1, a2) ∈ C∗ is the commutator of
the preimages of a1 and a2 in G (for all a1, a2 ∈ A). This makes G a theta group
attached to (A, e).

Remark 7.14. (i) Clearly, an element g of the theta group G lies in the centre
of G if and only if

e(j(g), j(h)) = 1 ∀h ∈ G.
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Since j(G) = A, the element g is central if and only if j(g) ∈ ker(e). This implies
that the centre of G coincides with j−1(ker(e)).

(ii) Clearly, a subgroup H of G is commutative if and only if its image j(H) ⊂ A

is an isotropic subgroup of A with respect to e.

Remark 7.15. Let G be a theta group that sits in the short exact sequence (14).
If B is a subgroup of A, then obviously the preimage j−1(B) is a theta group
attached to the symplectic pair (B, e|B).

Lemma 7.16. Let B be a finite subgroup of A. Then there exists a finite sub-
group B̃ of the theta group G such that j(B̃) = B .

Proof. In what follows we identify C∗ with its image in G and view it as a cer-
tain central subgroup of G. Let d be the exponent of B.

Consider the finite multiplicative subgroups µd and µd2 of all dth roots of unity
and d2th roots of unity, respectively, in C∗. We have

µd ⊂ µd2 ⊂ C∗ ⊂ G;

in addition,
e(B,B) ⊂ e(B,A) ⊂ µd. (15)

For every b ∈ B choose its lifting b̃ ∈ G such that

b̃d = 1, b̃−1 = b̃−1 ∀b ∈ B; (16)

this is possible since C∗ is a central divisible subgroup of C∗. Indeed, let b̃1 ∈ G be
any lifting of b to G, that is, j(b̃1) = b. Then

z1 := b̃d1 ∈ ker(j) = C∗.

We choose any
z = d

√
z1 ∈ C∗

and put b̃ = z−1b̃1 ∈ G. We have

j(b̃) = j(z−1) + j(b̃1) = 0 + b = b, b̃d = (z−1)d b̃d1 = z−1
1 z1 = 1.

Set
B̃ := {γb̃ | γ ∈ µd2 , b ∈ B} ⊂ G.

Clearly, B̃ is finite, j(B̃) = B, and

1 ∈ µd2 ⊂ B̃ = B̃−1 := {u−1 | u ∈ B̃}

(the latter equality follows from the invariance of the central subgroup µd2 and the
subset {b̃ | b ∈ B} under the map u 7→ u−1).

So, in order to prove that B̃ is a subgroup of G, it suffices to check that B̃ is
closed under multiplication in G. Let b1, b2 ∈ B and b3 = b1 + b2 ∈ B. We need to
compare b̃1b̃2 and b̃3 in G. Clearly, there is γ ∈ C∗ such that

b̃3 = γb̃1b̃2.
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Notice that
b̃d1 = b̃d2 = b̃d3 = 1 ∈ C∗ ⊂ G.

On the other hand, in light of (15),

γ0 := b̃1b̃2b̃
−1
1 b̃−1

2 = e(b1, b2) ∈ µd ⊂ C∗ ⊂ G.

It follows that the images of b̃1 and b̃2 in the quotient G/µd commute, and
therefore the image of b̃1b̃2 in G/µd has an order which divides d. This means that(

b̃1b̃2
)d ∈ µd,

and therefore (
b̃1b̃2

)d2 = 1.

It follows that

1 = b̃d
2

3 =
(
γ · b̃1b̃2

)d2 = γd
2(
b̃1b̃2

)d2 = γd
2
· 1 = γd

2
.

This implies that γd
2

= 1, that is, γ ∈ µd2 and therefore

b̃1b̃2 = γ−1b̃3 ∈ B̃.

This ends the proof.

Theorem 7.17. Let (A, e) be a symplectic pair. Suppose that Ā = A/ ker(e) is
finite. Assume also that either ker(e) is divisible or A is finite. Let G be a theta
group attached to (A, e).

Then G is a Jordan group and its Jordan index equals
√

#(Ā).

Proof. Assume that G sits in a short exact sequence (14). We can view C∗ as
a central subgroup of G. Let Ã be a finite subgroup of G and B̃ be a commuta-
tive subgroup of maximum order in Ã. Then B̃ contains the intersection Ã ∩ C∗,
and therefore the index [Ã : B̃] coincides with the index [j(Ã ) : j(B̃)]. The com-
mutativity of B̃ means that j(B̃) is an isotropic subgroup in j(Ã ). This implies
that

JG > DA,e.

Conversely, let A be a finite subgroup of A and B be an isotropic subgroup of
maximal order in A. By Lemma 7.16 there is a finite subgroup Ã of G such that

j(Ã ) = Ã.

Let B̃ be the preimage of B in Ã. Then

j(B̃) = B, [A : B] = [Ã : B̃].

By Remark 7.14(ii), B̃ is commutative because its image B is isotropic. The equality
of indices implies that

JG 6 DA,e,

which, combined with the previous opposite inequality, implies that JG = DA,e.
Now the explicit formula for JG follows from Remark 7.11.
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8. Symplectic linear algebra

In this section we construct theta groups that arise from (not necessarily non-de-
generate) alternating bilinear forms on integral lattices.

Definition 8.1. (i) An admissible triple is a triple (V,E,Π) that consists of
a non-zero real vector space V of finite positive even dimension 2g, an alternating
R-bilinear form

E : V × V → R

on V , and a discrete lattice Π of rank 2g in V such that E(Π,Π) ⊂ Z. Put

Π⊥E := {v ∈ V | E(v, l) ∈ Z ∀l ∈ Π}.

By definition Π⊥E is a closed real Lie subgroup of V that contains Π as a discrete
subgroup.

(ii)A symplectic pair attached to the admissible triple (V,E,Π) is a pair (KE,Π, eE)
where KE,Π := Π⊥E/Π and the bilinear pairing eE is defined as follows:

eE : Π⊥E/Π×Π⊥E/Π → C∗, (v1 + Π, v2 + Π) 7→ exp(2πiE(v1, v2)).

Definition 8.2. Recall that a subgroup C of a commutative group D is called
saturated if it enjoys the following equivalent properties:

• there are no elements of finite order in the quotient D/C except 0;
• if x is an element of D such that there is a positive integer m with mx ∈ C,

then x ∈ C.

Our goal is to find the isotropy index of (KE,Π, eE). In order to do this, consider
the kernel of E, that is, the subset

ker(E) = {v ∈ V | E(v, V ) = {0}} ⊂ V.

Clearly, ker(E) is a real even-dimensional (recall that E is alternating) vector sub-
space of V containing Π⊥E . Put

Π0 := Π ∩ ker(E) ⊂ ker(E).

Clearly, Π0 is a saturated subgroup of Π. The integrality property of E implies that
the natural homomorphism of real vector spaces

Π0 ⊗ R → ker(E), l0 ⊗ λ 7→ λ · l0 ∀ l0 ∈ Π0, λ ∈ R

is an isomorphism. In particular, the following conditions are equivalent:
(a) E is non-degenerate, that is, ker(E) = {0};
(b) Π0 = {0}.
Consider several cases.
Case I. If E ≡ 0, then

Π⊥E = V, KE,Π = Π⊥E/Π = V/Π, eE ≡ 1,

ker(eE) = KE,Π is divisible, and KE,Π/ ker(e) = {0} is finite. By Remark 7.11 the
isotropy defect DKE,Π,eE

equals 1.
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Case II. Suppose that E is a non-degenerate form. Let {s1, . . . , s2g} be any basis
of the Z-module Π. Clearly, it is also a basis of the R-vector space V . Let

Ẽ =
(
E(sj , sk)

)
∈ Mat2g(Z)

be the 2g × 2g skew-symmetric matrix of E with integer entries with respect to
this basis. Let det(Ẽ) and Pf(Ẽ) be the determinant of Ẽ and the Pfaffian of Ẽ,
respectively. Then

det(Ẽ) ∈ Z, Pf(Ẽ) ∈ Z; 0 ̸= det(Ẽ) = Pf(Ẽ)2.

In particular, det(Ẽ) is a positive integer. Clearly, det(Ẽ) does not depend on the
choice of a basis of Π, and therefore |Pf(Ẽ)| does not depend on this choice either.
That is why we denote det(Ẽ) by det(E,Π) and |Pf(Ẽ)| by |Pf(E,Π)|.

We claim that Π⊥E/Π is finite, the form

eE : Π⊥E/Π×Π⊥E/Π → C∗

is non-degenerate, and its isotropy defect is |Pf(E,Π)|.
Indeed, there is a basis {f1, h1, . . . , fg, hg} of Π such that

E(fj , hk) = −E(hk, fj) = 0 ∀ j ̸= k (1 6 j, k 6 g)

[37; Chap. XV, Exercise 17 on p. 598 (English ed.) or Chap. XIV, Exercise 4 on
p. 426 (Russian ed.)]. Put

dj = E(fj , hj) ∈ Z ∀j = 1, . . . , g.

The non-degeneracy of E means that dj ̸= 0 for all j. Replacing hj by −hj if
necessary, we may and will assume that dj > 0 for all j. If Ẽ is the matrix of E

with respect to this basis, then the Pfaffian Pf(Ẽ) of Ẽ is ±
g∏
j=1

dj , and therefore

|Pf(E,Π)| =
g∏
j=1

dj .

We claim that

Π⊥E =
g⊕
j=1

1
dj

(Z · fj ⊕ Z · hj). (17)

Indeed, a vector

v =
( g∑
j=1

λjfj

)
+

( g∑
j=1

µjhj

)
with all λj , µj ∈ R

lies in Π⊥E if and only if

Z ∋ E(fj , v) = djµj , Z ∋ (hj , v) = −djλj ∀j,

which is obviously equivalent to (17).
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It follows from (17) that

Π⊥E/Π =
g⊕
j=1

1
dj

(Z · fj ⊕ Z · hj)/(Z · fj ⊕ Z · hj). (18)

Clearly, different summands of Π⊥E/L are mutually orthogonal with respect to eE
while the restriction of eE to each

1
dj

(Z · fj ⊕ Z · hj)/(Z · fj ⊕ Z · hj)

is isomorphic to (Sdj
, edj

). In particular, this restriction is a non-degenerate sym-
plectic pair. This implies that the direct sum (Π⊥E/Π, eE) is also a non-degenerate
symplectic pair. On the other hand, clearly,

Π⊥E/Π ∼=
g⊕
j=1

(
1
dj

Z/Z
)2

.

Therefore,

#(Π⊥E/Π) ∼=
g∏
j=1

d2
j ,

√
#(Π⊥E/Π) =

g∏
j=1

dj = |Pf(E,Π)|.

This implies that (KE,Π, eE) is almost isotropic and its isotropy defect is |Pf(E,Π)|.
Case IIbis. We keep the notation and assumptions of Case II. Consider the

form nE, where n is a positive integer. Then

Π⊥nE =
1
n

Π⊥E =
g⊕
j=1

1
ndj

(Z · fj ⊕ Z · hj),

Π⊥nE/Π ∼=
g⊕
j=1

(
1
ndj

Z/Z
)2

,

#(Π⊥nE/Π) =
g∏
j=1

(ndj)2,
√

#(Π⊥E/Π) = ng
g∏
j=1

dj = ng · |Pf(E,Π)|.

Hence the corresponding isotropy index

DKnE,Π,enE
= ng · |Pf(E,Π)|

for all positive integers n.
Case III. Now consider the case of degenerate non-zero E, that is, the case when

{0} ≠ Π0 ̸= Π.

Clearly, Π0 is a free abelian group of some positive even rank 2g0 < 2g. Since Π0 is
a saturated subgroup of Π, it is a direct summand of Π, that is, there is a (non-zero
saturated) subgroup Π1 of Π that is a free abelian group of rank 2g− 2g0 and such
that

Π = Π0 ⊕Π1.
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In other words, there is a basis {u1, . . . , u2g0 ; v1, . . . , v2g−2g0} of the Z-module Π
such that {u1, . . . , u2g0} is a basis of Π0 and {v1, . . . , v2g−2g0} is a basis of Π1.
Consider the real vector subspaces

V0 :=
2g0∑
j=1

Ruj ⊂ V, V1 :=
2g1∑
k=1

Rvk ⊂ V.

Clearly,
V = V0 ⊕ V1, Π0 = V0 ∩Π, Π1 = V1 ∩Π;

in addition, V0 = ker(E), the subspaces V0 and V1 are mutually orthogonal with
respect to E and the restriction of E to V1,

E1 : V1 × V1 → R, u, v 7→ E(u, v),

is a non-degenerate alternating bilinear form. It is also clear that

E1(Π1,Π1) = E(Π1,Π1) ⊂ E(Π,Π) ⊂ Z.

On the other hand, the restriction of E to V0, which we denote by E0, is identically 0.
This implies that (as the symplectic pair)

(KE,Π, eE) = (KE0,Π0 , eE0)⊕ (KE1,Π1 , eE1).

By Case I as applied to (V0, E0,Π0), the group KE0,Π0 = V0/Π0 is divisible as
a quotient of a complex vector space, and eE0 ≡ 1. By Case II as applied to
(V1, E1,Π1), the group KE1,Π1 is finite of order |Pf(E,Π)|2 and the pairing

eE1 : KE1,Π1 ×KE1,Π1 → C∗

is non-degenerate. Hence ker(eE) = KE0,Π0 , and therefore ker(eE) is divisible and

KE,Π/ ker(eE) = KE1,Π1

is a finite group. This implies that (KE,Π, eE) is almost isotropic and its isotropy
defect is

DKE,Π,eE
=

√
#(KE,Π/ ker(eE)) =

√
#(KE1,Π1) = |Pf(E1,Π1)| (19)

by Theorem 7.17.
Case IIIbis. We keep the notation and assumptions of Case III. Let

M : V × V → R

be an alternating bilinear form that enjoys the following properties:
(a) M(Π,Π) ⊂ Z;
(b) ker(E) ⊂ ker(M).

If n is an integer, then we write M(n) for the alternating bilinear form nE + M

on V . Clearly,

M(n)(Π,Π) ⊂ nE(Π,Π) +M(Π,Π) ⊂ nZ + Z = Z.
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Lemma 8.3. There exists a degree g − g0 polynomial P(t) ∈ Z[t] with integer
coefficients and leading coefficient |Pf(E1,Π1)| that enjoys the following property:
For all but finitely many positive integers n the symplectic pair (KM(n),Π, eM(n)) is
almost isotropic with isotropy defect

DKM(n),Π,eM(n) = P(n). (20)

Proof. Indeed, let M1 : V1× V1 → R be the restriction of M to V1. Let Ẽ1 and
M̃1 be the matrices of E1 and M1 with respect to the basis {f1, . . . , f2g−2g0} of Π1.
The non-degeneracy of E1 implies that det(Ẽ1) ̸= 0, and therefore the determinant

det(nẼ1 + M̃1) = det(Ẽ1) det(n I2g−2g0 +Ẽ−1
1 M̃1)

does not vanish for all but finitely many integers n. (Here and in what follows
I2g−2g0 is the identity square matrix of size 2g − 2g0.) Taking into account that
nẼ1 + M̃1 is the matrix of the restriction of nE +M = M(n), we obtain that for
all but finitely many integers n

ker(M(n)) = ker(nE +M) = ker(E) = V0. (21)

In what follows we assume that n is any integer that enjoys property (21) (this
assumption excludes only finitely many integers n). Now we can apply the results
of Case III to M(n) = nE + M (instead of E) and get that (KM(n),Π, eM(n)) is
almost isotropic and its isotropy defect is

|Pf(nE1 +M1,Π1)| =
√

det(nE1 +M1) =
√

det(Ẽ1) det
(
n I2g−2g0 +Ẽ−1

1 M̃1

)
= |Pf(E1,Π1)|

√
det

(
n I2g−2g0 +Ẽ−1

1 M̃1

)
.

Clearly, there is a polynomial Q(t) ∈ Z[t] with integer coefficients such that for all n
under consideration

Q(n) = Pf(nẼ1 + M̃1).

This implies that

Q(n)2 = det(nẼ1 + M̃1) = det(Ẽ1) det
(
n I2g−2g0 +Ẽ−1

1 M̃1

)
.

It is also clear that there exists a monic degree 2g − 2g0 polynomial R(t) ∈ Q[t]
with rational coefficients such that for all our n

R(n) = det
(
n I2g−2g0 +Ẽ−1

1 M̃1

)
.

This implies that

Q(n)2 = det(Ẽ1)R(n) = |Pf(E1,Π1)|2R(n).

Since R(t) is monic of degree 2g − 2g0, we have

deg(Q) = g − g0

and the leading coefficient of Q(t) is ±|Pf(E1,Π1)|.
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Let P(t) be the polynomial with positive leading coefficient that coincides either
with Q(t) or with −Q(t). Then P(t) is a degree g − g0 polynomial with integer
coefficients and leading coefficient |Pf(E1,Π1)| such that

P(n) = ±Pf(nẼ1 + M̃1).

Since the leading coefficient of P(t) is positive, we see that P(n) is positive for all
but finitely many positive integers n. Hence

P(n) = |Pf(nẼ1 + M̃1)| = |Pf(nE1 +M1,Π1)|

for all such n. This completes the proof.

Theorem 8.4. Let g be a positive integer, V be a 2g-dimensional real vector
space, and (V,E,Π) and (V,M,Π) be admissible triples such that

E ̸≡ 0 and ker(E) ⊂ ker(M).

If n is an integer, then we write M(n) for the alternating bilinear form nE + M

on V .
Let G be a group that enjoys the following properties: there are infinitely many

positive integers n such that G contains a subgroup Gn that is a theta group attached
to (KM(n),Π, eM(n)).

Then G is not Jordan.

Proof. It suffices to check that the Jordan index of Gn tends to infinity as n
tends to infinity. But this assertion follows from the results of Cases II, III, IIIbis
of this section combined with Theorem 7.17.

9. Line bundles over tori and theta groups

In this section we use results from the previous two sections in order to compute
the Jordan index of certain automorphism groups of holomorphic line bundles on
complex tori.

Let V be a complex vector space of finite positive dimension g, Π be a discrete
lattice of rank 2g in V , and

H : V × V → C

be an Hermitian form on V such that its imaginary part

E : V × V → R, (v1, v2) 7→ Im(H(v1, v2)),

satisfies
E(Π,Π) ⊂ Z.

One can view V as the 2g-dimensional real vector space. Then E becomes an
alternating R-bilinear form on V such that

E(iv1, iv2) = E(v1, v2) ∀v1, v2 ∈ V.
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In addition,

H(v1, v2) = E(iv1, v2) + iE(v1, v2) ∀v1, v2 ∈ V

(see [12; Lemma 2.1.7]). This implies that H and E have the same kernels, that is,

ker(H) := {w ∈ V | H(w, V ) = 0} = {w ∈ V | E(w, V ) = 0} =: ker(E).

Definition 9.1 (see [11], [33]). A pair (H,α) is called Appell–Humbert data
(A.-H. data) on (V,Π) if H, E, Π are as above and α is a map (“semicharacter”)

α : Π → U(1) = {z ∈ C : |z| = 1} ⊂ C∗

such that
α(l1 + l2) = (−1)E(l1,l2)α(l1)α(l2) ∀l1, l2 ∈ Π. (22)

In particular, if l1 = l2 = 0, then α(0) = α(0)2, that is,

α(0) = 1.

Notice that a classical theorem of Appell and Humbert ([33; Theorem 1.5], [11;
Theorem 21.1]) classifies holomorphic line bundles on the complex torus V/Π in
terms of A.-H. data.

The construction in section 8 gives us the symplectic pair (KE,Π, eE). The aim
of this section is to construct a theta group G(H,α) attached to this pair that
corresponds to any A.-H. data (H,α). We define G̃(H,V ) to be a certain group
of biholomorphic automorphisms of L(H,α). Here L(H,α) is the total body of the
holomorphic line bundle L(H,α) over V/Π that corresponds to A.-H. data (H,α).

First, we start with a certain theta group G̃(H,V ) attached to the symplectic
pair (V, ẽE) where

ẽE : V × V → C∗, (v1, v2) 7→ exp(2πiE(v2, v1)).

We define G̃(H,V ) as a certain group of holomorphic automorphisms of

VL := V × L

where L is a one-dimensional C-vector space. Namely, G̃(H,V ) consists of the
automorphisms BH,u,λ indexed by u ∈ V , λ ∈ C∗ that are defined as follows:

BH,u,λ : (v, c) 7→
(
v + u, λ exp(πH(v, u)c)

)
∀ v ∈ V, c ∈ L.

One may easily check (see [87; § 2.1]) that

BH,u1,λ1 ◦ BH,u2,λ2 = BH,u1+u2,λ1λ2µ where µ = exp(πH(u2, u1)) (23)

and the inverse is

B−1
H,u,λ = BH,−u,ν/λ where ν = exp(−πH(u, u)). (24)

This implies that G̃(H,V ) is indeed a subgroup of the group of biholomorphic
automorphisms of VL. (Our G(H,α) will be defined as a subquotient of G̃(H,V ).)
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Notice that for all λ ∈ C∗ the automorphism BH,0,λ sends every (u, c) to (u, λc).
This implies that the map

mult : C∗ → G̃(H,V ), λ 7→ BH,0,λ,

is an injective group homomorphism, whose image lies in the center of G̃(H,V ).
This allows us to include G̃(H,V ) in a short exact sequence of groups

1 → C∗ mult−−−→ G̃(H,V )
j̃−→ V → 0

where j̃ sends BH,u,λ to u. It follows from (23) and (24) (see also [87; § 2.1]) that

BH,u1,λ1 ◦ BH,u2,λ2 ◦ B−1
H,u1,λ1

◦ B−1
H,u2,λ2

= mult(exp(2πiE(u2, u1))) = mult(ẽE(u1, u2)). (25)

This implies that G̃(H,V ) is a theta group attached to the symplectic pair (V, ẽE).
Consider the following subgroups of G̃(H,V ):

G̃(H,Π) = j̃−1(Π) = {BH,u,λ | λ ∈ C∗, u ∈ Π}; (26)

G̃(H,Π⊥E) = j̃−1(Π⊥E) = {BH,u,λ | λ ∈ C∗, u ∈ Π⊥E}. (27)

By Remark 7.15, G̃(H,Π) and G̃(H,Π⊥E) are theta groups attached to the sym-
plectic pairs (Π, ẽ|Π) and (Π⊥E , ẽ|Π⊥E ), respectively. Since Π ⊂ Π⊥E , the group
G̃(H,Π) is a subgroup of G̃(H,Π⊥E). It follows from (25) that G̃(H,Π) is actu-
ally a central subgroup of G̃(H,Π⊥E), because

E(Π,Π⊥E) = {0}.

We define G(H,α) as the quotient of G̃(H,Π⊥E) by a certain central subgroup that
depends on the “semicharacter” α. In order to define this subgroup, let us consider
the discrete free action of the group Π on VL by holomorphic automorphisms defined
as follows. An element l of Π acts as

AH,α,l : VL → VL, (v, c) 7→
(
v + l, cα(l) exp

(
πH(v, l) +

1
2
πH(l, l)

))
(28)

∀ v ∈ V, c ∈ L,

that is,
AH,α,l = mult(α(l))BH,l,1 ∈ G̃(H,Π). (29)

Direct calculations based on (22) show that

AH,α,l1AH,α,l2 = AH,α,l1+l2 ∀l1, l2 ∈ Π,

that is,
AΠ : Π → G̃(H,Π), l 7→ AH,α,l,

is an injective group homomorphism, whose image we denote by

Π̃ = Π̃(H,α) := AΠ(Π) ⊂ G̃(H,Π) ⊂ G̃(H,Π⊥E).
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Notice that Π̃ meets mult(C∗) precisely at the identity element of G̃(H,Π⊥E). Notice
that the quotient VL/Π̃(H,α) is precisely the total body L(H,α) of the holomor-
phic vector bundle L(H,α) over V/Π attached to the A.-H. data (H,α) where the
structure map

p : L(H,α) = VL/Π̃(H,α) → V/Π

is induced by the projection map

VL = V × L → V

[12; Chap. 2, § 2.2, p. 30]. Put

G(H,α) := G̃(H,Π⊥E)/Π̃(H,α). (30)

The faithful action of G̃(H,Π⊥E) on VL induces a faithful action of G(H,α) on
L(H,α). Under this action each coset

BH,u,λΠ̃ ∈ G̃(H,Π⊥E)/Π̃(H,α) = G(H,α)

maps C-linearly and isomorphically the fibre of p over v + Π ∈ V/Π to the fibre
over (v + u)Π ∈ V/Π for any pair

u+ Π ∈ Π⊥E/Π ⊂ V/Π, and v + Π ∈ V/Π, and λ ∈ C∗.

In particular, mult(λ)Π̃ acts as the automorphism [λ] that leaves invariant each fibre
of p : L(H,α) → V/Π and acts on this fibre (which is a one-dimensional C-vector
space) as multiplication by λ (for all λ ∈ C∗). Clearly, each [λ] lies in the centre of
G(H,α).

Lemma 9.2. The group G(H,α) is a theta group attached to the symplectic pair
(KE,Π, eE).

Proof. Clearly,
[mult] : C∗ → G(H,α), λ 7→ [λ],

is an injective group homomorphism, whose image [mult](C∗) is a central subgroup
of G(H,α). On the other hand, j̃ induces the surjective group homomorphism

j : G(H,α) = G̃(H,Π⊥E)/Π̃ � Π⊥E/Π = KE,Π,

BH,u,λΠ̃ 7→ u+ Π ∈ Π⊥E/Π.

Clearly, the kernel of j consists of all BH,0,λΠ̃ = [mult](λ), that is, it coincides with
[mult](C∗). Hence G(H,α) sits in the short exact sequence

1 → C∗ [mult]−−−−→ G(H,α)
j−→ Π⊥E/Π → 0.

It follows from (25) that G(H,α) is a theta group attached to the symplectic pair
(KE,Π, eE).

Remark 9.3. It is well known [12; Lemma 2.2.1] that if (H1, α1) and (H2, α2)
are A.-H. data on (V,Π), then the pair (H1 +H2, α1α2) also is A.-H. data on (V,Π)
and the holomorphic vector bundles L(H1 +H2, α1α2) and L(H1, α1)⊗ L(H2, α2)
are canonically isomorphic.
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10. P1-bundles bimeromorphic to the direct product

In this section we prove the non-Jordanness of the groups of bimeromorphic
self-maps of certain P1-bundles over complex tori of positive algebraic dimension.

Let V be a complex vector space of finite positive dimension g, Π be a discrete
lattice of rank 2g in V , and T = V/Π be the corresponding complex torus. Recall
that 1T stands for the trivial holomorphic line bundle T × C over T . If x is point
of T , then we write Lx for the fibre of a holomorphic vector bundle L over T , which
is a one-dimensional complex vector space. We write L̄ for the projectivization P(E)
of the two-dimensional holomorphic vector bundle E = L ⊕ 1T . The fibre Ex of E
over x is the set of pairs (sx, c), where sx ∈ Lx, c ∈ C and the fibre L̄x of L̄ over x
is the set of equivalence classes of (sx : c), where either sx ̸= 0 or c ̸= 0 and the
equivalence class of (sx : c) is the set of all

(µsx : µc), µ ∈ C∗.

Lemma 10.1. Suppose that L = L(H,α), where (H,α) is A.-H. data. Then there
is a natural group embedding

G(H,α) ↪→ Aut(L(H,α)).

Proof. First, let us define the group embedding

G(H,α) ↪→ Aut(L(H,α)⊕ 1T ) (31)

by the formula

g : (sx, (x, c)) 7→ (g(sx), (x+ j(g), c)) (32)
∀ g ∈ G(H,α), x ∈ V/Π = T, c ∈ C, sx ∈ Lx ⊂ L.

In particular, g induces an isomorphism of two-dimensional complex vector spaces
between the fibres of L(H,α) ⊕ 1T over x and over x + j(g). Since G(H,α) →
Aut(L(H,α)) is a group embedding, we conclude that if j(g) = 0, then gx is multi-
plication by a scalar if and only if g is the identity element of G(H,α). This implies
that (31) and (32) induce a group embedding

G(H,α) ↪→ Aut(P(L(H,α)⊕ 1T )) = Aut(L(H,α)) (33)

such that each g ∈ G(H,α) sends every (sx : c) ∈ L(H,α)x to (g(sx) : c) ∈
L(H,α)x+j(g). This completes the proof.

Let L be a holomorphic line bundle over the complex torus T = V/Π. Then L ∼=
L(H,α) for certain (actually, unique) A.-H. data H,α) on (V,Π) [33; Theorem 1.5].
Let us denote by G(L) the group G(H,α). By Lemma 10.1 there exists a group
embedding

G(L) ↪→ Aut(L̄). (34)

Lemma 10.2. Let L and N be holomorphic line bundles over T = V/Π. Assume
that L admits a non-zero holomorphic section. Then the compact complex manifolds
N and Ln ⊗N are bimeromorphic for all positive integers n. In particular, for all
such n there is a group embedding

G(Ln ⊗N ) ↪→ Bim(N ). (35)
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Proof. Let t be a non-zero section of L. Then tn is a non-zero section of Ln.
So it suffices to prove the lemma for n = 1, that is, to prove that L̄ and L ⊗N are
bimeromorphic.

The holomorphic C-linear map of rank 2 vector bundles

N ⊕ 1T → (L ⊗N )⊕ 1T ,

(sx; (x, c)) 7→ (sx ⊗ t(x); (x, c)) ∀ x ∈ T, sx ∈ Nx, c ∈ C,

induces a bimeromorphic isomorphism of their projectivizations N and L ⊗N .
Hence the groups Bim(N ) and Bim(L ⊗N ) are isomorphic. Now the second asser-
tion of our lemma follows from Lemma 10.1.

Corollary 10.3. We keep the notation and assumptions of Lemma 10.2. In
particular, L is isomorphic to L(H,α) and admits a non-zero holomorphic section.

Suppose that N is isomorphic to L(H0, β), where the kernel ker(H0) of the Her-
mitian form H0 contains the kernel ker(H) of the Hermitian form H .

Then the group Bim(N ) is not Jordan.

Proof. Consider the alternating R-bilinear forms E := Im(H) andM := Im(H0)
on V . We have

ker(E) = ker(H) ⊂ ker(H0) = ker(M),

and therefore ker(E) ⊂ ker(M). Notice also that the alternating form M(n) =
nE + M is the imaginary part of the Hermitian form nH + H0 for all positive
integers n; in addition, obviously, the holomorphic line bundle

Ln ⊗N ∼= L(H,α)n ⊗ L(H0, β) = L(nH +H0, αβ
n) = L(M(n), αβn).

In light of Lemma 10.2 there is a group embedding

G(nH +H0, αβ
n) ↪→ Bim(N ).

On the other hand, applying Lemma 9.2 to (nH +H0, αβ
n) (instead of (H,α)),

we conclude that G(nH +H0, αβ
n) is a theta group attached to the symplectic pair

(KM(n),Π, eM(n)). Now the desired result follows from Theorem 8.4.

Definition 10.4. Let T = V/Γ be a complex torus. We write Ta for its alge-
braic model, which is also a complex torus (even an abelian variety) provided with
a surjective holomorphic homomorphism of complex tori

πa : T � Ta

with connected kernel (actually, all the fibres of πa are connected) [11; Chap. 2, § 6].
We write dima(T ) for dim(Ta) and call it the algebraic dimension of T .

Clearly,
dim(Ta) 6 dim(T );

equality holds if and only if T = Ta, that is, T is an abelian variety.

Theorem 10.5 (Theorem 1.7 of [87]). Suppose that a complex torus T = V/Π
has a positive algebraic dimension. Then Bim(T × P1) is not Jordan.
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Proof. TakeN = 1T . ThenN = T×P1. On the other handN = 1T ∼= L(0,1),
where 0 is the zero Hermitian form on V and

1Π : Π → {1} ⊂ U(1) ⊂ C∗

is the constant semicharacter (actually, character) of Π that identically equals 1.
Clearly,

ker(0) = V.

Since dima(T ) > 0, the algebraic model Ta is a positive-dimensional abelian
variety. Then Ta admits an ample holomorphic line bundle La with a non-zero
section. Since ψ : T → Ta is surjective, the inverse image L = ψ∗La is a holomorphic
line bundle on T that also admits a non-zero section. We have L ∼= L(H,α) for
some A.-H. data (H,α). Obviously,

ker(H) ⊂ V = ker(0).

Therefore, we can apply Corollary 10.3 and obtain that the group Bim(N ) is not
Jordan. It remains to recall that N = T × P1.

The following assertion is a generalization of Theorem 10.5.

Theorem 10.6 (special case of Theorem 1.8 in [87]). Let ψ : T → A be a surjec-
tive holomorphic group homomorphism from a complex torus T = V/Π to a positive-
dimensional complex abelian variety A. Let M be a holomorphic line bundle over A
and F be a holomorphic line bundle over T that is isomorphic to the inverse im-
age ψ∗M.

Then the group Bim(F) is not Jordan.

Proof. A positive-dimensional complex abelian variety A is a complex torus
A = W/Γ (where W is a complex vector space of finite positive dimension m and
Γ is a discrete lattice of rank 2m in W ) that admits a polarization, that is, a positive
(and therefore non-degenerate) Hermitian form

HA : W ×W → C,

whose imaginary part

EA : W ×W → R, (w1, w2) 7→ Im(HA(w1, w2)),

satisfies the condition
EA(Γ,Γ) ⊂ Z.

Replacing HA by 2HA if necessary, we may and will assume that

EA(Γ,Γ) ⊂ 2 · Z.

Then obviously (HA,1Γ) is A.-H. data on (W,Γ). The positiveness of HA implies
that the corresponding holomorphic line bundle L(HA,1) over A has a non-zero
holomorphic section (the corresponding theta function) (see [33; Theorem 2.1]).
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It follows from [11; Lemma 2.3.4 on p. 33] that every surjective holomorphic
homomorphism ψ : T → A is induced by some surjective C-linear map ψ̄ : V → W

in the sense that

ψ̄(Π) ⊂ Γ; ψ(v + Π) = ψ̄(v) + Γ ∈W/Γ = A ∀ v + Π ∈ V/Π = T.

The surjectiveness of ψ implies that the induced holomorphic line bundle L =
ψ∗L(HA,1Γ) over T also has a non-zero holomorphic section.

Let (HA, β) be A.-H. data on (W,Γ) and L(HA, β) be the corresponding holomor-
phic line bundle over A = W/Γ. Then the inverse image ψ∗L(HA, β) is isomorphic
to L(HA ◦ ψ̄, β ◦ ψ̄) where the A.-H. data (HA ◦ ψ̄, β ◦ ψ̄) for (V,Γ) are as follows
(see [33; Lemma 2.3.4]):

HA ◦ ψ̄ : V × V → C, (v1, v2) 7→ HA(ψ̄v1, ψ̄v2);

β ◦ ψ̄ : Π → U(1), l 7→ β(ψ̄(l)).
(36)

In light of the non-degeneracy of HA, this implies that

ker(HA ◦ ψ) = ker(ψ̄) ⊂ ker(HA ◦ ψ̄) ⊂ V. (37)

Now let (HA, β) be the A.-H. data on (W,Γ) such that M is isomorphic to
L(HA, β). In light of (36), F is isomorphic to L(HA ◦ ψ̄, β ◦ ψ̄). In particular,
L = ψ∗L(HA,1Γ) is isomorphic to L(HA ◦ ψ̄,1Π). Here

1Π = 1Γ ◦ ψ̄ : Π → {1} ⊂ U(1)

is the trivial character of Π. Since L admits a non-zero holomorphic section, the
inclusion (37) allows us to apply Corollary 10.3 to N = F and H0 = HA ◦ ψ̄ and
conclude that Bim(F) is not Jordan.

Remark 10.7. Let V , Π, T , and F be as in Theorem 10.6. Suppose that F ∼=
L(H,α). Let α′ : Π → U(1) be a map such that (H,α′) also is A.-H. data on (V,Π).
Let F ′ be a holomorphic line bundle on T that is isomorphic to L(H,α′). Then
the same arguments as in the proof of Theorem 10.6 prove that Bim(F ′) is also
non-Jordan (see Theorem 1.8 of [87]).

Chapter 4. Non-trivial P1-bundles over a non-uniruled base

In this chapter we consider the group Aut(X) for a non-trivial P1-bundle over
a non-uniruled compact complex connected Kähler manifold Y . Recall that there
is a homomorphism τ : Aut(X) → Aut(Y ) and its kernel is denoted by Aut(X)p.
First we classify automorphisms f ∈ Aut(X)p, that is, those automorphisms that
do not move fibres of p. We get that if Aut(X)p ̸= {id}, then either X or its double
cover is a projectivization P(E) of rank 2 vector bundle over Y or its double cover,
respectively. Thus, if Y is Kähler, then X is too [82; Proposition 3.5]. Thus the
group Aut(X) is Jordan by a theorem of J. H. Kim [34]. It appears that if X
is scarce (that is, does not have many sections: see Definition 11.5 below), then
Aut0(X) is commutative and Aut(X) is very Jordan. This is, for example, the case
when Y is a torus of algebraic dimension zero.
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11. Automorphisms of P1-bundles that preserve fibres

This section contains the classification of those automorphisms of a P1-bundle X
that preserve the fibres of p : X → Y . There are three different types; each type is
described in a separate subsection.

Let (X, p, Y ) be a P1-bundle over a compact complex connected manifold Y ,
that is,

• X, Y are compact connected complex manifolds of positive dimension;
• p : X → Y is a surjective holomorphic map;
• X is a holomorphically locally trivial fibre bundle over Y with fibre P1 and

with the corresponding projection map p : X → Y .
Let Py stand for the fibre p−1(y). Let U ⊂ Y be an open non-empty subset of Y .
We call a covering U =

⋃
Ui of Y by open subsets Ui, i ∈ I, to be fine if for every

i ∈ I there exists an isomorphism φi : Vi = p−1(Ui) → Ui × P1
(xi:yi)

such that
• (u, zi), u ∈ Ui, zi = xi/yi ∈ C, are local coordinates in Vi := p−1(Ui) ⊂ X;
• pr ◦ φi = p, where pr : Ui × P1 → P1 is the natural projection (see (NA.14)

in § 3).

Definition 11.1. A k-section S of p is a codimension 1 irreducible analytic
subset D ⊂ X such that the intersection X ∩ Py is finite for every y ∈ Y and
consists of k distinct points for a general y ∈ Y . By a bisection we mean a 2-section
that meets every fibre at two distinct points. Obviously, an ordinary holomorphic
section S of p is a 1-section. A section S is defined by the set a = {ai(y)} of
functions ai : Ui → P1 such that p(y, ai(y)) = id, y ∈ Ui. We will denote this
by S = a.

Lemma 11.2. Let A1 , A2 , A3 be three distinct almost sections of p (see Defi-
nition 6.5). Assume that there is an analytic subspace Σ ⊂ Y of codimension at
least 2 such that the Ak , k = 1, 2, 3, are pairwise disjoint in V = p−1(U), where
U = Y \ Σ.

Then there exists an isomorphism Φ: X → Y × P1 such that pr ◦ Φ = p, where
pr : Y × P1 → P1 is the natural projection (see (NA.14) in § 3).

Proof. Indeed, let {Ui} be a fine covering of Y and let

aki(u)xi − bki(u)yi = 0, u ∈ Ui,

be the equation of Ak ∩ U , k = 1, 2, 3, over Ui. We define a meromorphic func-
tion F (x) in every Vi by

F (x) =
[a1i(u)xi − b1i(u)yi] [a2i(u)b3i(u)− a3i(u)b2i(u)]
[a2i(u)xi − b2i(u)yi] [a1i(u)b3i(u)− a3i(u)b1i(u)]

, u = p(x). (38)

Then F (x) is globally everywhere defined and meromorphic in V . Its restrictions
to A1 ∩ V , A2 ∩ V , and A3 ∩ V are equal to 0, ∞, and 1, respectively.

The fibre of p has dimension 1, thus X \ V = p−1(Σ) has codimension 2 in X.
Hence the function F can be extended to a meromorphic function on the whole of X
by Levi’s continuation theorem (Theorem 5.9). Thus, we have the bimeromorphic
map Φ: X → Y ×P1, Φ(x) = (p(x), F (x)), which induces an isomorphism of V onto
U × P1 that is compatible with p. According to Lemma 5.12, Φ is an isomorphism.
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Remark 11.3. In particular, if there are three disjoint sections in X, then X ∼
Y × P1.

Remark 11.4. Note that a section is an almost section. If A is an almost section
but not a section, then the set

Σ(A) = {y ∈ Y | p−1(y) ⊂ A} ⊂ Y

has codimension at least 2 because
(a) Σ̃ := p−1(Σ(A)) is a proper analytic subset of A with dim(A) = dim(Y ) = n;

thus dim(Σ̃) 6 n− 1;
(b) every fibre of restriction of p to Σ̃ has dimension 1.

Definition 11.5. We say that three sections S1, S2, and S3 in X are a good
configuration if S1 ∩ S2 = S1 ∩ S3 = ∅ and S2 ∩ S3 ̸= ∅. We say that three almost
sections A1, A2, and A3 in X are a special configuration if A1 ∩ A2 = A1 ∩ A3 =
A2 ∩A3. We say that X is scarce if X admits no special configurations.

Lemma 11.6. Let S1 , S2 , S3 , and S4 be four distinct sections of p such that
S1 ∩ S2 = ∅ and S3 ∩ S4 = ∅. Then X ∼ Y × P1 .

Proof. If S3 ∩ (S1 ∪ S2) = ∅, then X ∼ Y × P1 (Remark 11.3). Assume
that X ̸∼ Y × P1. Let ∅ ̸= S3 ∩ S2 = D ⊂ S2. Let {Ui}i∈I be a fine covering
of Y . In every Vi = p−1(Ui) we choose coordinates (y, zi) in such a way that
S2 ∩ Vi = {zi = 0} and S1 ∩ Vi = {zi = ∞}. Then zj = λijzi in Vi ∩ Vj , where the
λij are holomorphic functions not vanishing in Ui ∩ Uj .

Let S3 ∩ Vi = {(y, zi = pi(y)), y ∈ Ui}, where pj = λijpi, and S4 ∩ Vi =
{(y, zi = qi(y)), y ∈ Ui}, where qj = λijqi. Then r(y) := pi(y)/qi(y) is a globally
defined meromorphic function on Y which omits value 1 (since S3∩S4 = ∅). Thus,
r := r(y) = const. But then qi vanishes at D and S3 ∩ S4 ⊃ D. Contradiction.

Remark 11.7. We have also proved the following fact: IfX contains two disjoint
sections S1 and S2, then

• there is a holomorphic line bundle L := L(S1, S2) such that X ∼ P(L⊕1Y );
• there is a fine covering

⋃
i∈I

Ui of Y and coordinates (u, zi), u ∈ Ui, zi ∈ C,
in Vi, such that

S1 ∩ Vi = {zi = ∞}, S2 ∩ Vi = {zi = 0};

• zj = aijzi, and the cocycle a = {aij} defines L.

Lemma 11.8. If there exist three distinct almost sections A1 , A2 , and A3 of p,
then there exists a bimeromorphic map Φ: X → Y × P1 such that pr ◦ Φ = p.

Proof. We keep the notation of the proof of Lemma 11.2.
Let

Σ(Ai) = {y ∈ Y | p−1(y) ⊂ Ai}, i = 1, 2, 3, and Σ =
3⋃
1

Σ(Ai).

Let Σ̃ = p−1(Σ).
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The function F (x) defined by (38) is defined and meromorphic at every point
outside the set

D = (A1 ∩A3) ∪ (A2 ∩A3) ∪ (A1 ∩A2) ∪ Σ̃.

Since codimension of D is at least 2, the function F can be extended to a mero-
morphic function on X by Levi’s theorem. Consider a map Φ: X → Y × P1,
x 7→ (p(x), F (x)). It is meromorphic and induces an isomorphism on every fibre Pu,
u ̸∈ p(D), to P1. Thus Φ is bimeromorphic.

Lemma 11.9. If X admits a good configuration S1 , S2 , S3 , then X admits a spe-
cial configuration.

Proof. By assumption S1 ∩ S2 = S1 ∩ S3 = ∅ and S3 ∩ S2 ̸= ∅. Recall that
S2 is the zero section of the line bundle L(S1, S2) (see Remark 11.7). Let {Ui}i∈I
be a fine covering of Y and (u, zi), u ∈ Ui, zi ∈ C, be coordinates in Vi such that
S1∩Vi = {zi = ∞} and S2∩Vi = {zi = 0}. Let the non-zero section of L, namely, S3,
have the equation zi = hi(u) in Vi. For any c ∈ C∗ the equations zi = chi also define
a section S4 ̸= S3 of L. By construction S2 ∩S3 = S2 ∩S4 = S3 ∩S4 =

⋃
i∈I
{hi = 0}.

Thus, S2, S3, and S4 is a special configuration.

Now we consider the subgroup Aut(X)p of those automorphisms f of X that
do not move fibres of p, that is, such that p ◦ f = f . Similarly to Lemma 11.2,
every f ∈ Aut(X)p defines locally a holomorphic map ψf : Y → PSL(2,C) and the
function

TD(y), y 7→ TD(ψf (y)) =
tr2(ψf (y))
det(ψf (y))

(see (NA.15) in § 3) is everywhere defined and holomorphic, hence is a constant
on Y (see [7; Remark 4.9]). We denote this constant by TD(f).

Assume that X ̸∼ Y × P1. Let f ∈ Aut(X)p and f ̸= id. Recall that Fix(f) is
the set of all fixed points of f . Let {Ui}i∈I be a fine covering of Y . We summarize
in Lemmas 11.10 and 11.11 below the properties of non-identity automorphisms
f ∈ Aut(X)p with TD(f) ̸= 4 (see [7]).

Lemma 11.10. Assume that (X, p, Y ) is a P1-bundle and X ̸∼ Y × P1 . Let
f ∈ Aut(X)p , where f ̸= id and TD(f) ̸= 4. Then one of following two cases holds.

Case A: the set Fix(f) consists of exactly two disjoint sections S1 , S2 of p.
We say that f is of type A with data (S1, S2), an ordered pair. In the notation
of Remark 11.7, let {Ui}i∈I , L(S1, S2), and a = {aij} be the corresponding fine
covering, holomorphic line bundle, and cocycle, respectively. Then

1) there is a number λf ∈ C∗ such that in every Vi

f(u, zi) = (u, λfzi); (39)

2) if G0 ⊂ Aut(X)p is the subgroup of all f ∈ Aut(X)p such that f(S1) = S1 ,
f(S2) = S2 , then G0

∼= C∗ ;
3) the restriction f → f |Py

defines a group embedding of G0 into Aut(Py).
Case C: the set Fix(f) is a smooth unramified double cover S of Y . (We call such

an automorphism f an automorphism of type C with data S .) Here S is a bisection
of p.
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Proof. TD(f) ̸= 4 implies that f has exactly two distinct fixed points in every
fibre Py = p−1(y), y ∈ Y . Thus Fix(f) is either a union of two disjoint sections or
a 2-section of p. In case A equality (39) follows from the fact that

f(u, zi) = λizi, f(u, zj) = λjzj = λjaijzi = aijλizi.

The constant λf = λi ̸= 0 does not depend on the choice of the fibre, hence f is
determined uniquely by its restriction to any given fibre. On the other hand, for
every λ ∈ C∗ there exists an automorphism fλ ∈ Aut(X)p defined in every Vi by

(u, zi) → (u, λzi).

Therefore, G0
∼= C∗. The lemma is proved.

Lemma 11.11 (see [7]). Let S be a bisection of the P1-bundle (X, p, Y ).
Consider

X̃ := X̃S := S ×Y X = {(s, x) ∈ S ×X ⊂ X ×X | p(s) = p(x)}.

We denote the restriction of p to S by the same letter p, and let pX and p̃ stand
for the restrictions to X̃ of the natural projections S × X → X and S × X → S ,
respectively. We write inv : S → S for the involution (the only non-trivial deck
transformation for p|S ). Then (X̃, p̃, S) is a P1-bundle with the following properties.

(a) The diagram

X

p̃

��

pX // X

p

��
S

p|S // Y

(40)

commutes.
(b) pX : X̃ → X is an unramified double cover of X .
(c) Every fibre p̃−1(s), s ∈ S , is isomorphic to

Pp(s) = p−1(p(s)) ∼ P1.

(d) The P1-bundle X̃ over S has two disjoint sections, namely,

S+ := S+(f) := {(s, s) ∈ X̃ | s ∈ S ⊂ X},

S− := S−(f) := {(s, inv(s)) ∈ X̃ | s ∈ S ⊂ X}.

They are mapped onto S isomorphically by pX .
(e) Every h ∈ Aut(X)p induces an automorphism h̃ ∈ Aut(X̃)p̃ defined by

h̃(s, x) = (s, h(x)).

(f) The involution s 7→ inv(s) can be extended from S to a holomorphic involution
of X̃ by

inv(s, x) = (inv(s), x).

(g) Every section N = {y, σ(y)} of p in X induces the section Ñ := {(s, σ(p(s)))}
of p̃ in X̃ . We have pX(Ñ) = N is a section of p, thus Ñ cannot coincide with S+

or S− .
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11.1. Automorphisms with TD = 4. If f ∈Aut(X)p, f ̸= id, and TD(f) = 4,
then there is precisely one fixed point of f in the fibre Py = p−1(y) over the general
point y ∈ Y . This means that Fix(f) contains precisely one almost section D of p.
In this case we say that f is of type B with data D.

Lemma 11.12. Let (X, p, Y ) be a P1-bundle, where X and Y are compact con-
nected complex manifolds, dim(Y ) = n, f ∈ Aut(X)p , f ̸= id, and TD(f) = 4. Let
D be the only almost section contained in Fix(f). Let Σ = {y ∈ Y | Py ⊂ D} and
U = Y \ Σ, V = p−1(U) ⊂ X . Let S̃ be the union of all irreducible components of
Fix(f) distinct from D , and let S = p(S̃).

Then
(i) there is a fine covering {Ui}i∈J of U and coordinates (u, zi) in Vi = p−1(Ui)

such that D ∩ Vi = {zi = ∞};
(ii) f(u, zi) = (u, zi + τi(u)), where the τi are holomorphic functions on Ui ;
(iii) if i, j ∈ J , then zj = µijzi + νij where µij and νij are holomorphic functions

in Ui ∩ Uj and µij does not vanish. Moreover, the µij depend on D and the
choice of coordinates in Vi but not on f ;

(iv) if i, j ∈ J , then τj = µijτi in Ui ∩ Uj ;
(v) S has pure codimension 1 in Y .

Proof. Recall that the set Σ has codimension at least 2 in Y (Remark 11.4).
Now we prove the assertions of the lemma.

(i) follows from the fact that D is a section of p over U .
(ii) follows from the fact thatD ⊂ Fix(f), thus the restriction of f onto a fibre Py,

y ∈ Ui, is an automorphism of P1 which is either identity or has the only fixed point
zi = ∞.

(iii) follows from the fact that zj is obtained from zi by an automorphism of P1

with z = ∞ fixed.
Since X admits an almost section, we see that X ∼ P(E) for some rank 2

holomorphic vector bundle E on Y with projection π : E → Y ([78; Lemma 3.5]
and Theorem 6.7). This means that we have a fine covering {Ui} and a cocycle
Aij ∈ GL(2,O(Ui ∩ Uj)) of two by two transition matrices for E such that

• π−1(Ui) ∼ Ui × C2
xi,yi

;
• if Ui ∩ Uj ̸= ∅, then

Aij

[
xi
yi

]
=

[
xj
yj

]
.

Since D∩V is a section of p over U , we can choose a basis in C2
xi,yi

in such a way
that the preimage of D ∩ Ui in Ui × C2

xi,yi
is Ui × {(xi, 0)}, xi ∈ C.

• For these coordinates we have

Aij

[
1
0

]
=

[
λi,j
0

]
.

• Moreover,

Aij =
[
λi,j bij
0 λ̃i,j

]
, (41)

where bij , λi,j , λ̃i,j , and the functions
dij = λi,j λ̃i,j = det(Aij) (42)

are holomorphic in Ui ∩ Uj .
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Now let zj = xj/yj , zi = xi/yi. Then

zj =
λi,jxi + bijyi

yiλ̃i,j
= µijzi + νij . (43)

Thus µij = λ2
i,j/dij = λi,j/λ̃i,j depends on the choice of D and is defined by the

eigenvalue of the basis vector in the invariant subspace representing D. It does not
depend on the choice of f with the given data D.

Note that both {λi,j} and {λ̃i,j} form cocycles for a covering of U .
Item (iv) follows from the fact that f is globally defined and D is fixed, thus

f(u, zj) = (u, zj + τj(u)) = (u, µijzi + νij + τj(u)) = (u, µij(zi + τi(u)) + νij).

Item (v) follows from the fact that the functions τi are holomorphic and S∩Ui =
{τi = 0}. Indeed, let S̃1 ⊂ S̃ be an irreducible component of S̃. It cannot be an
almost section, thus S1 = p(S̃1) is a proper analytic subset of Y . Moreover, since
Σ̃ ⊂ D, we have: S̃1 ̸⊂ Σ̃, S1 ̸⊂ Σ. Thus, S1 ∩U is a dense open subset of S1. Since
S ∩ Ui = {τi = 0} has pure codimension 1 (if S ∩ Ui ̸= ∅), the same is valid for
every component of it that intersects Ui. Thus, dim(S1) = n− 1.

Lemma 11.12 is proved.

Proposition 11.13. In the notation of Lemma 11.12 let S1, . . . , Sk be all the
irreducible components of S . Then

(i) For every l, 1 6 l 6 k , a non-negative number nl is defined that is the order of
the zero of τi along the component Sl if Sl∩Ui ̸= ∅. It depends on l but not on i. The

holomorphic line bundle L(f) corresponding to the effective divisor ∆f :=
k∑
l=1

nlSl

restricts to U to the holomorphic line bundle defined by the cocycle µij .
(ii) Let GD be the subgroup of Aut(X)p of all those g ∈ Aut(X)p , that have

TD(g) = 4 and D ⊂ Fix(g). Then GD is isomorphic to the additive group of
H0(Y,L(f)). Thus GD ∼= (C+)n , n > 0.

Proof. Let Sl be an irreducible component of S. For every Ui such that Sl ∩
Ui ̸= ∅ the order nli of zero of τi along Sl is defined. In Ui ∩Uj we have τj = τiµij .
Since µij does not vanish, τj has the same order of zero along Sl ∩ Uj . Since Sl is
irreducible and U ∩ Sl is open and dense in Sl, the order nl is well defined (see, for
example, [31; Remarks 2.3.6]). By construction, the divisor of τi in Ui is ∆f ∩ Ui,
thus the transition function for L(f) in Ui ∩ Uj is τj/τi = µij .

Let h ∈ Aut(X)p, and TD(h) = 4, and D ⊂ Fix(g). Applying Lemma 11.12(iii)
we get that h(u, zi) = (u, zi + hi(u)), where hj = µijhi. Thus the function defined

in every Ui by Gh(u) =
hi
τi

is meromorphic in U . By Levi’s theorem Gh(u) is

meromorphic on Y . By construction its divisor (Gh) > −∆f , thus G ∈ H0(Y,L(f)).
On the other hand letG be a meromorphic function on Y with divisor (G) > −∆f

(that is, G ∈ H0(Y,L(f))). For every i the function hi = Gτi is holomorphic in Ui,
hence we can define a holomorphic automorphism of every Vi = p−1(Ui) by

h(u, zi) = (u, zi + hi(u)). (44)
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Since hj := µijhi, the map h is an automorphism of V . Moreover, all the points
of D ∩ V =

⋃
{zi = ∞} are fixed by h. By Lemma 5.13 it can be extended to

a bimeromorphic map of X.
By Lemma 5.12, h ∈ Aut(X)p. Moreover, Fix(h̃) contains the closure of D ∩ V ,

that is, D. In the general fibre Py of p it has precisely one fixed point D ∩Py, thus
TD(h) = 4.

Hence we obtain a one-to-one map

φ : GD → H0(Y,L(f)), h ∈ GD 7→ Gh ∈ H0(Y,L(f)).

From Lemma 11.12(iii) we get that the composition of g, h ∈ Aut(X)p is defined
by the cocycle gi + hi made up of the corresponding cocycles, which implies that

φ(h ◦ g) = φ(h) + φ(g).

This proves the proposition.

The next lemma answers the question when an almost section D ⊂ Fix(f) is
a section. We used this fact in [7], in dealing with automorphisms of type B.

Lemma 11.14. In the notation of Lemma 11.12 and Proposition 11.13, if ∆f = 0,
then D is a section.

Proof. First note that ∆f = 0 implies that the corresponding line bundle Lf
is trivial and f ̸= id in the fibre Fy = p−1(y) if y ̸∈ Σ.

Since X admits an almost section, X ∼ P(E) for some rank 2 holomorphic vector
bundle E on Y ([78; Lemma 3.5], Theorem 6.7). This means that we have a fine
covering {Ui}i∈I of Y and a cocycle Aij of 2×2 matrices (with entries holomorphic
in Ui ∩ Uj) such that

(a) p−1(Ui) = Vi ∼ Ui × P1
xi:yi

, zi = xi/yi and if Ui ∩ Uj ̸= ∅, then

Aij

[
xi
yi

]
=

[
xj
yj

]
;

(b) in every Ui there exists a 2× 2 matrix Fi (representing f) whose entries are
holomorphic functions (in u ∈ Ui) and such that TD(Fi) = 4, det(Fi) =
di ̸= 0, and f(u, (xi : yi)) = (u, (x′i : y′i)), where[

x′i
y′i

]
= Fi

[
xi
yi

]
;

(c) Fj(u)Aij(u) = Aij(u)Fi(u)
dj
di

.

Since 4di = tr(Fi)2 is a square, we can divide Fi by tr(Fi)/2 =
√
di and assume

that di = 1 (we use that (xi : yi) are homogeneous coordinates in P1
xi:yi

).
Assume that D is not a section, that is, Σ = {y ∈ Y | p−1(y) ⊂ D} ≠ ∅.
Let the fine covering of Y consist of open sets U0, . . . , UN , and let U0, . . . , Uk

meet Σ, while U = Y \ Σ =
N⋃

i=k+1

Ui.

Then for each i > k we may assume the following.
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1) Fi =
[
1 τi
0 1

]
= I+τiV where I is the identity matrix, the τi are holomorphic

functions in Ui, and V =
[
0 1
0 0

]
(by Lemma 11.12(ii)).

2) Recall that Lf
∣∣
U

is defined on U by a cocycle {µij}, where µij = τj/τi
is a non-vanishing holomorphic function on Ui ∩ Uj if Ui ⊂ U and Uj ⊂ U

(by Lemma 11.12). Since Lf is trivial, we may assume that the cocycle {µij}
is trivial, that is, µij = 1 and τi = 1 do not depend on i for Ui ⊂ U =
Y \ Σ. Moreover, from (42) and (43) we get that the Aij are triangular
matrices, and for the eigenvalues λij , λ̃ij of the Aij we have λij = λ̃ij .
Hence det(Aij) = λ2

ij .
Thus, if both i, j > k, we may assume that

Aij =
[
λij νij
0 λij

]
where λij , νij are holomorphic functions in Ui ∩ Uj .

Take a point s ∈ Σ and let U0 be a neighbourhood of s. Let r̃(s) be the number
of those neighbourhoods Ui with i > k in our fine covering for which Ui ∩ U0 ̸= ∅.
Let r = r̃(s). Let

Ut, . . . , Ut+r, t > k,

be those neighbourhoods for which Ui ∩ U0 ̸= ∅, t 6 i 6 t+ r. For t 6 i, j 6 t+ r

we have the following:
(a) F0 = Ai0(u)FiAi0(u)−1 = I +Wi = I + Aj0(u)V Aj0(u)−1 = I +Wj , where

Wi = Ai0(u)V Ai0(u)−1, t 6 i 6 t+r; it follows that the matrix function Wi defined
a priori in U0 ∩ Ui can be extended to a matrix function with holomorphic entries
to U0 \ Σ, hence, to the whole of U0 and

Wi = Wj ; (45)

(b) if Ui ∩ Uj ∩ U0 ̸= ∅, then

Ai0(u)A−1
j0 (u) = Aij(u); (46)

(c) if we let

Ai0(u) =
[
α1(u) β1(u)
γ1(u) δ1(u)

]
and Aj0(u) =

[
α2(u) β2(u)
γ2(u) δ2(u)

]
,

then

Wi(u) =
[
−α1(u)γ1(u) α2

1(u)
−γ2

1(u) α1(u)γ1(u)

]
= Wj(u) =

[
−α2(u)γ2(u) α2

2(u)
−γ2

2(u) α2(u)γ2(u)

]
(47)

and

Ai0(u)A−1
j0 (u) =

1
dj0

[
α1δ2 − β1γ2 −α1β2 + β1α2

γ1δ2 − δ1γ2 −γ1β2 + δ1α2

]
=

[
λij νij
0 λij

]
. (48)
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Let Ũij = Ui ∩ Uj ∩ U0 ̸= ∅. From (47) we get that α2
1 = α2

2 and α1(u)γ1(u) =
α2(u)γ2(u) in Ũij . Note that these equations are valid in the whole of U0 since Wi

and Wj are defined there.
In Ũij the following three cases are possible: α1 = α2 and γ1 = γ2, α1 = −α2

and γ1 = −γ2, or α1 = α2 = 0.
Case 1: α1 = α2 and γ1 = γ2 in Ũij . Plugging this into (48) we obtain the

following:

1
dj0

[
α1δ2 − β1γ2 −α1β2 + β1α2

γ1δ2 − δ1γ2 −γ1β2 + δ1α2

]
=

1
dj0

[
α1δ2 − β1γ1 −α1β2 + β1α1

γ1δ2 − δ1γ1 −γ2β2 + δ1α2

]
=

1
dj0

[
di0 + α1(δ2 − δ1) α1(β1 − β2)
γ1(δ2 − δ1) dj0 − α2(δ2 − δ1)

]
=

[
λij νij
0 λij

]
.

Thus there are two cases again.
Case 1.1: γ1 ≡ 0 in Ũij , hence γ2

1 = 0 in U0. Then in the whole of U0

F0 =
[
1 α2

1(u)
0 1

]
and α2

1(u) does not vanish in U0 since codim(Σ) 6 2 and ∆f = 0, that is, F0(u) ̸= I
if u ̸∈ Σ. Thus, D ∩ V0 = {y0 = 0} and Σ ∩ U0 = ∅. This contradicts the inclusion
s ∈ Σ.

Case 1.2: γ1 ̸≡ 0 and δ2 ≡ δ1 in Ũij . Then 1 = λij = di0/dj0. Moreover,

β1 =
α1δ1 − di0

γ1
= β2 =

α2δ2 − dj0
γ2

and νij = 0 in Ũij ∩{γ1 ̸= 0}. Since this set is open in Ui ∩Uj , we have νij ≡ 0 and

Aij ≡
[
1 0
0 1

]
.

It follows that there is a compatible with p isomorphism Vi∪Vj ∼ (Ui∪Uj)×P1
z,

where z = xi/yi = xj/yj . Thus we can replace Ui, Uj by Ui ∪ Uj and obtain a new
fine covering of Y consisting of N−1 open subsets and such that r̃(s) = r−1. Since
U0 is connected we can repeat this process (recall that γ1 = γ2 ̸≡ 0 in Ui ∪Uj so we
remain in Case 1.2) till we obtain a covering with r̃(s) = 1.

Thus, since U0 \ Σ is contained in Ut ∪ · · · ∪ Ut+r we get that p−1(U0 \ Σ) ∼
(U0 \ Σ) × P1

z. By Lemma 5.12 and Lemma 5.13 this extends to an isomorphism
and D is the preimage of {z = ∞}.

Case 2: α1 = −α2 and γ1 = −γ2. Plugging this into (48) we obtain the following:

1
dj0

[
α1δ2 − β1γ2 −α1β2 + β1α2

γ1δ2 − δ1γ2 −γ1β2 + δ1α2

]
=

1
dj0

[
α1δ2 + β1γ1 −α1β2 − β1α1

γ1δ2 + δ1γ1 γ2β2 + δ1α2

]
=

1
dj0

[
−di0 + α1(δ2 + δ1) −α1(β1 + β2)

γ1(δ2 + δ1) −dj0 − α1(δ2 + δ1)

]
=

[
λij νij
0 λij

]
.

Similarly to Case 1 we have the two following options.
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Case 2.1: γ1 ≡ 0. Then

F0 =
[
1 α2

1(u)
0 1

]
and D is a section of p over U0.

Case 2.2: γ1 ̸≡ 0 and δ2 ≡ −δ1 in Ũij . Then −1 = λij = −di0/dj0.
Then β1 = (α1δ1 − di0)/γ1 = −β2 = −(α2δ2 − dj0)/γ2 and νij = 0. Similarly to

Case 1.2 we get that p−1(U0 \ Σ) ∼ (U0 \ Σ)× P1
z and D is a section of p over U0.

Case 3: α1 = α2 = 0. According to (47)

F0 = I +Wi =
[

1 0
−γ2

1(u) 1

]
and γ2

1(u) does not vanish in U0 since ∆f = 0. Thus D ∩ V0 = {z = 0}, which
contradicts the inclusion s ∈ Σ.

Lemma 11.14 is proved.

Remark 11.15. We may assume that a fine covering of Y contains a finite cov-
ering of U since U0 \ Σ can be covered by two neighbourhoods U0 ∩ {αi ̸= 0} and
U0 ∩ {γi ̸= 0} (see (47)).

Lemma 11.16. Let f ∈ Aut(X)p , f ̸= id, be an automorphism of type B with
data D . Assume that there exists an almost section A of p distinct from D . Then
X contains a special configuration.

Proof. Since A ̸= D, and A ̸⊂ Fix(f), we have A1 := f(A) ̸= D and A1 ̸= A.
Similarly, A2 := f(A1) ̸= D and A2 ̸= A1. Let us show that A2 ̸= A.

If A2 = A, then in the fibre Py = p−1(y) over the general point y ∈ Y there
is point a = A ∩ Py such that f(a) ̸= a but f(f(a)) = a. But along the general
fibre Py the map f acts as a translation z → z + τ where τ ̸= 0. This map has no
periodic points except z ̸= ∞. This contradiction shows that A2 ̸= A.

Let us show that A, A1, A2 is a special configuration. For a fibre Py we have the
following options:

• f |Py
= id; then Py ∩A = Py ∩A1 = Py ∩A2;

• f |Py
is translation z → z + τ and Py ∩ A ̸= Py ∩D; then Py ∩ A, Py ∩ A1,

and Py ∩A2 are pairwise disjoint sets;
• f |Py

is translation z → z + τ and a := Py ∩ A = Py ∩D, then Py ∩ A1 = a,
Py ∩A2 = a.

It follows that A∩A1 = A∩A2 = A1∩A2 and A, A1, A2 is a special configuration.

Corollary 11.17. In the notation of Lemma 11.16, if X is scarce and Aut(X)p
contains an automorphism f of type B with data D , then it contains no automor-
phisms of type B with data different from D , nor automorphisms of type A.

Proof. Indeed, the existence of such automorphisms would imply the existence
of an almost section (in particular, a section in the case of type A) distinct from
the one contained in Fix(f).
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11.2. Automorphisms of type A.

Lemma 11.18. Assume that X ̸∼ Y × P1 . Let S1 and S2 be two sections of p
such that S1 ∩ S2 = ∅. Let f ∈ Aut(X)p . Then one of the following holds:

(a) f(S1) ⊂ S1 ∪ S2 ;
(b) f(S2) ⊂ S1 ∪ S2 ;
(c) f(S1 ∪ S2) = S1 ∪ S2 .

Proof. Note that a fibrewise automorphism moves a section to a section. Let
S3 = f(S1), S4 = f(S2). Since S1 ∩ S2 = ∅, we have S3 ∩ S4 = ∅. According to
Lemma 11.6 this can occur only if the pairs (S3, S4) and (S1, S2) share a section.
This may occur only if one of the sections of the pair (S3, S4) coincides with either S1

or S2. The lemma is proved.

Recall that the group G0 of all those f ∈ Aut(X)p that have the data (S1, S2) is
isomorphic to C∗ (see Lemma 11.10).

Assume that the holomorphic line bundle L(S1, S2) is defined by a cocycle {λij}
and L(S1, S2)⊗2 has a section T ⊂ X defined by a := {ai(y)} such that aj(y) =
λ2
ijai(y).
Define

φT : X → X, φT (y, zi) =
(
y,
ai(y)
zi

)
.

The fixed point set Fix(φT ) = {φT (y, zi) = (y, zi)} is defined by T ∩Vi = {z2
i = ai}.

If φT ∈ Aut(X)p, then the ai do not vanish. In this case a := {ai} provide a section
of L⊗2

p that does not meet the zero section, thus L⊗2
p is a trivial bundle and we

can define zi in such a way that ai = a = const ̸= 0. Then we write T = Ta and
φa := φT .

Proposition 11.19. Let (X, p, Y ) be a P1-bundle, where X and Y are compact
connected complex manifolds, and X ̸∼ Y × P1 . Let S1 and S2 be two sections of p
such that S1 ∩ S2 = ∅. Let L := L(S1, S2) be the corresponding holomorphic line
bundle over Y . Let

• G1 ⊂ Aut(X)p be the subgroup of all f ∈ Aut(X)p such that f(S1) = S1 ;
• G2 ⊂ Aut(X)p be the subgroup of all f ∈ Aut(X)p such that f(S2) = S2 ;
• G ⊂ Aut(X)p be the subgroup of all f ∈ Aut(X)p such that f(S1 ∪ S2) =
S1 ∪ S2 ;

• F1 be the additive group of H0(Y,O(L));
• F2 be the additive group of H0(Y,O(L−1)).

Then
1) X does not admit a good configuration (see Definition 11.5) if and only if

F1 = F2 = {0};
2) G1

∼= C∗ o F1 ;
3) G2

∼= C∗ o F2 ;
4) either G = G0 = G1∩G2

∼= C∗ or L⊗2
p is a trivial bundle and G = G0⊔φa ·G0

for some a ∈ C∗ .

Proof. Let λ = {λij} be the cocycle corresponding to L. Take f ∈ G1. Since
S1 = {zi = ∞} is f -invariant, we have

f(y, z) = (y, aizi + bi) (49)
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in Vi, where both ai and bi are holomorphic functions in Ui. Since f is globally
defined, we have

λij(aizi + bi) = ajλijzi + bj .

It follows that ai = aj := a is constant (as globally defined holomorphic function)
and bj = λijbi, hence b := {bi} is a section of L. On the other hand every section
b := {bi} of L defines f ∈ G1 by formula (49). Thus, G1 is isomorphic to the group
of matrices [

a b
0 1

]
,

where a ∈ C∗ and b ∈ F1. We have also shown that if f ∈ G1 is defined by
b := {bi} ≠ 0, then f(S2) ̸= S2, and f(S2) ∩ S1 = ∅. If f(S2) ∩ S2 = ∅,
then S1, f(S2), S2 would be three pairwise disjoint sections, which contradicts to
X ̸∼ Y × P1.

Thus S1, f(S2), S2 is a good configuration.
In the opposite direction: consider a good configuration S1, S2, S3 such that

S3 ∩ S1 = ∅ and S3 ∩ S2 ̸= ∅. Since S3 is a section of p and does not meet S1, it
is defined by a section b := {bi} as zi = bi(y), y ∈ Ui. Thus, F1 ̸= {0}.

The case of G2 and sections that meet S1 but do not meet S2 can be treated in
the same way, by interchanging S2 with S1 and F1 with F2. This proves 1)–3).

Let us prove 4). If for each f ∈ G all points in S1∪S2 are fixed, thenG = G0
∼= C∗

by Lemma 11.10. If this is not the case, take φ ∈ G \ G0. Then φ(S1) = S2 and
φ(S2) = S1. Thus, φ(y, zi) = ai(y)/zi in every Vi and

λij
ai(y)
zi

=
aj(y)
λijzi

(50)

where the ai(y) are non-vanishing holomorphic functions in Ui. Thus {ai(y)} define
a section of L⊗2. Since ai(y) never vanish, we get that L⊗2 is trivial. Therefore,
we may choose zi in such a way that ai = a ∈ C∗. Then φ = φa.

For any other f ∈ G \ G0 the composition f ◦ φ belongs to G0, hence G =
G0 ⊔ φa ·G0. Proposition 11.19 is proved.

Corollary 11.20. Let (X, p, Y ) be a P1-bundle, where X and Y are compact
connected manifolds and X ̸∼ Y ×P1 . Assume that p admits no good configurations
but admits two disjoint sections S1 and S2 . Then one of the following holds:

1) Aut(X)p ∼= C∗ ;
2) the holomorphic line bundle L(S1, S2)⊗2 is trivial and Aut(X)p = G0⊔φa·G0 ,

for some a ∈ C∗ ; here G0
∼= C∗ and a ∈ C∗ .

The restriction map Aut(X)p → Aut(Py), f 7→ f |Py , is a group embedding.

Proof. It follows from Proposition 11.19 that F1 = F2 = {0}, thus Aut(X)p= G.

11.3. Automorphisms of type C. Let (X, p, Y ) be a P1-bundle where X

and Y are complex compact connected manifolds. Assume that X ̸∼ Y × P1 and
f ∈ Aut(X)p, f ̸= id, has type C. The analytic subset F ⊂ X of all fixed points
of f contains no sections, but contains a bisection S that is a smooth unramified
double cover of Y (see Lemma 11.10). Below we use the notation of Lemmas 11.10
and 11.11.
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Lemma 11.21. Assume that X̃ := X̃S ̸∼ S × P1 . Let N ⊂ X̃ be a section of p̃
distinct from S+ and S− . Then NX := pX(N) is a section of p and S+, S−, N is
not a good configuration.

Proof. Let us show that pX: N → NX is an unramified double cover. Indeed,
assume that this is not the case. Since X̃ is the unramified double cover of X,
the preimage p−1

X (x) contains precisely two points for every x ∈ NX . Thus, if
p−1
X (NX) ̸= N , then the preimage p−1

X (NX) consists of two irreducible components,
N and N1. Moreover, since pX is unramified, we have N ∩N1 = ∅. It follows that
there are two distinct pairs of non-intersecting sections of p̃, namely, S+, S− and
N,N1. According to Lemma 11.6, X̃ ∼ S × P1, which gives us a contradiction. It
follows that N is a double cover of NX . Let s ∈ S and y = p(s) = p(inv(s)). Then

p−1
X (NX ∩ Py) = N ∩ p−1

X (Py) = N ∩
(
p̃−1(s) ∪ p̃−1(inv(s))

)
contains two points (since N meets every fibre of p̃ at a single point).

Since N is double cover of NX , it follows that (NX ∩ Py) contains precisely one
point. Therefore, NX is a section of p.

Assume that N meets S+ at a point a = (s, s) ∈ X̃, s ∈ S. Then it meets S− at
the point inv(a) = (inv(s), s) since pX(a) = pX(inv(a)). Thus, N meets both S+

and S− and the configuration is not good.

Corollary 11.22. Assume that (X, p, Y ) is a P1-bundle that admits a non-
identity automorphism f ∈ Aut(X)p of type C with data S . Assume that the cor-
responding double cover X̃S ̸∼ S × P1 . Then

(i) one of the following holds:
• Aut(X̃)p̃ ∼= C∗ ,
• Aut(X̃)p̃ = G̃0 ⊔ φa · G̃0 , where G̃0

∼= C∗ and φ ∈ Aut(X̃)p̃ interchanges
S+ with S− ;

(ii) the restriction map Aut(X)p → Aut(Py), f 7→ f |Py , is a group embedding
for every y ∈ Y ;

(iii) the map h 7→ h̃ is a group embedding of Aut(X)p to Aut(X̃)p̃ .

Proof. Since there are no good configurations in X̃f by Lemma 11.21, assertion
(i) follows from Corollary 11.20 applied to X̃.

Take u ∈ S and t ∈ Y , t = p(u). If f |Pt = id, then by construction
(a) f̃

∣∣
Pu

= id, hence

(b) f̃ = id (by Corollary 11.20 applied to X̃), hence

(c) f̃
∣∣
Ps

= id for every s ∈ S, hence

(d) f |Py = id for y = p(s) ∈ Y .

Consequently, f is uniquely determined by its restriction to the fibre Pt = p−1(t).
This proves (ii).

On the other hand it was shown in (ii) that h̃ = id implies that f |Py
= id for

every y ∈ Y , that is, h = id. Therefore, h 7→ h̃ is an embedding. This proves (iii).
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Lemma 11.23. Assume that f ∈ Aut(X)p , f ̸= id, and f is of type C with data
(bisection) S .

(i) If the corresponding double cover (see case C) X̃ := X̃S is not isomorphic to
S×P1 , then the group Aut(X)p has exponent 2 and consists of two or four elements.

(ii) If X̃ is isomorphic to S×P1 , then there are two disjoint sections S1, S2 ⊂ X

of p. Moreover, if X ̸∼ Y × P1 , then Aut(X)p is a disjoint union of its abelian
complex Lie subgroup Γ ∼= C∗ of index 2 and its coset Γ′ . The subgroup Γ consists
of those f ∈ Aut(X)p that fix S1 and S2 . The coset Γ′ consists of those f ∈ Aut(X)p
that interchange S1 and S2 . Moreover, the restriction homomorphism Aut(X)p →
Aut(Py), f 7→ f |Py , is a group embedding for every y ∈ Y .

Proof. We modify the proof of Lemma 4.7 in [7].
Choose a point a ∈ S. Let b = p(a) ∈ Y . This means that a sits in the

two-element set S ∩ Pb. The lift f̃ of f to X̃ has type A with data (S+, S−) ⊂ X̃,
since the points of S are fixed by f . It is determined uniquely by its restriction
to Pa (see Proposition 11.19). For the corresponding holomorphic line bundle L̃ :=
L̃(S−, S+) the section S+ is the zero section. Let

• {Ũj} be a fine covering of S;

• (u, zj) be local coordinates in Ṽj = p̃−1(Ũj) such that zj
∣∣
S+

= 0, zj
∣∣
S−

= ∞;

• a ∈ Ũi, inv(a) ∈ Ũk, and Ũk ∩ Ũi = ∅;
• b = p(a) = p(inv(a)) ∈ Y .

The following two assertions were proved in Lemma 4.7 of [7].
A. If we define the isomorphism α : Czi

→ Czk
in such a way that the diagram

Pb

id

��

(a,id) // a× Pb

��

zi // Czi

α

��
Pb

(inv(a),id) // inv(a)× Pb
zk // Czk

(51)

is commutative, then

zk = α(zi) =
ν

zi

for some ν = ν(a) ̸= 0.
B. Consider an automorphism h ∈ Aut(X)p. Let h̃ be its pullback to Aut(X̃)p̃

defined by h̃(s, x) = (s, h(x)). Let n1(zi) = h̃
∣∣
P̃a

, which means that h(a, zi) =

(a, n1(zi)). Let n2(zk) = h̃
∣∣
P̃inv(a)

, which means that h(inv(a), zk) = (a, n2(zk)).
Then

ν

n1(zi)
= α(n1(zi)) = n2(α(zi)) = n2

(
ν

zi

)
. (52)
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Proof of (i). Assume that X̃ ̸∼ S × P1.
According to Corollary 11.22, if h̃ ∈ Aut(X̃)p̃, then either h̃(s, zj) = λzj , or

h(s, zj) = λ/zj in every Ũj of our fine covering, where λ ∈ C∗ does not depend on s
or j.

Fix a ∈ S. According to item B one of following two conditions holds:
(a) n1(zi) = λzi, n2(zk) = λzk, zk = ν(a)/zi, and

ν(a)
λzi

= λ
ν(a)
zi

by (52);
(b) n1(zi) = λ/zi, n2(zk) = λ/zk, zk = ν/zi, and

νzi
λ

=
λzi
ν

by (52).
In the former case λ = ±1 and in the latter λ = ±ν. Hence at most four maps

are possible. Clearly, the squares of all these maps are the identity map.
Note that all calculations are done for the fibre of p̃ over the point a. We use the

fact that the map h̃ is defined by its restriction to a fibre. A priori, ν could depend
on the fibre. But since λ does not, as a byproduct we obtain that the same is valid
for ν.

Proof of (ii). Assume that X̃ ∼ S × P1. Let ζ : S × P1 → P1 be the projection
onto the second factor, and let ζ1 = ζ|S+ and ζ2 = ζ|S− . Since S+ ∩ S− = ∅, the
function z = (ζ − ζ1)/(ζ − ζ2) is well defined on X̃.

Since z = 0 on S+ = {(s, s)} and z = ∞ on S− = {(s, inv(s))}, we may assume
that zj = z for all j. Recall that for every s

inv(s, z) = (inv(s), α(z)) =
(

inv(s),
ν(s)
z

)
. (53)

This implies that ν(s) is a holomorphic function on S, hence ν = const. From (53)
we get that two disjoint sections N1 = {(s, z =

√
ν)} and N2 = {(s, z = −

√
ν)}

(for some choice of
√
ν) are invariant under the involution, which means that their

images are two disjoint sections S1 and S2, respectively, in X.
Thus, X has two disjoint sections. Let us show that there is no good configuration

in X. Assume that S3 is a third section (of p) in X. On S̃3 = p−1
X (S3) ⊂ X̃ the

function z is either a constant or takes all values in C. If it is constant, then X has
three disjoint sections (S1, S2, S3), thus X = Y × P1. If z takes all values on S̃3,
then S3 meets both S1 and S2, thus S1, S2, S3 is not a good configuration.

Now (ii) follows from Corollary 11.20, which completes the proof of Lemma 11.23.

We have proved (see Lemma 11.12) that if X ̸∼ Y ×P1 and there is f ∈ Aut(X)p,
f ̸= id, of type B, then Aut(X)p contains a subgroup isomorphic to (C+)n for some
positive integer n.

Corollary 11.24. Assume that X ̸∼ Y × P1 and Aut(X)p contains an auto-
morphism f ̸= id of type B. Then Aut(X)p contains no automorphisms of type C.
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Proof. Assume that Aut(X)p contains an automorphism of type C. Then by
Lemma 11.23, Aut(X)p is either finite or consists of two cosets isomorphic to C∗;
in both cases Aut(X)p does not contain a Lie subgroup Γ ∼= (C+)n with n > 0.

Proposition 11.25. Let (X, p, Y ) be a P1-bundle, where X and Y are complex
compact connected manifolds and Y is Kähler and not uniruled. Then Aut(X) is
Jordan.

Proof. Indeed, we have proved that three cases are possible.
(a) Aut(X)p = {id}; then Aut(X) embeds in Aut(Y ), which is Jordan according

to [34].
(b) Aut(X)p contains an automorphisms of type A or B. Then X = P(E) for

some rank 2 vector bundle E on Y . Thus, X is Kähler [82; Proposition 3.5].
(c) Aut(X)p contains an automorphisms of type C. Then the double cover X̃

of X fits into case (b). Thus, X is Kähler.
In cases (b) and (c), Aut(X) is Jordan, once more, according to [34].

12. Structure of Aut0(X) and Aut(X)

In this section we prove the main result of this chapter. Namely, we prove that
the group Aut(X) is very Jordan, provided that the P1-bundle (X, p, Y ) is scarce.

Theorem 12.1. Let (X, p, Y ) be a P1-bundle, where X , Y are complex compact
connected manifolds, X is not biholomorphic to the direct product Y ×P1 , and Y is
Kähler and not uniruled. Assume that (X, p, Y ) is scarce.

Then:
(i) the connected identity component Aut0(X) of the complex Lie group Aut(X)

is commutative;
(ii) the group Aut(X) is very Jordan; more precisely, there is a short exact se-

quence
1 → Aut0(X) → Aut(X) → F → 1, (54)

where F is a bounded group;
(iii) the commutative group Aut0(X) sits in a short exact sequence of complex

Lie groups
1 → Γ → Aut0(X) → H → 1, (55)

where H is a complex torus and one of the following conditions holds:
(a) Γ = {id}, the trivial group;
(b) Γ ∼= (C+)n ;
(c) Γ ∼= C∗ .

Proof. We know that the set of almost sections is either infinite or contains at
most two of them (by Lemma 11.8 and Remark 6.6).

Consider two cases.
Case 1. There are no almost sections of p. Then Aut(X)p is finite by Lemma 11.23.
Case 2. p has only two almost sections, A1 and A2, which meet.
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Assume that f ∈ Aut(X)p, f ̸= id. Since f takes almost sections to almost
sections, A1∪A2 is invariant under f . According to Proposition 11.19, the following
cases are possible:

• Points of A1 are fixed points of f . Then the same is true for A2. Since A1

and A2 meet, f is neither of type A nor of type C. Since they are distinct,
f cannot be of type B (see Lemma 11.16). Thus f = id and Aut(X)p = {id}.

• Not all points of A1 are fixed points of f . This means that f(A1) = A2 and
f(A2) = A1. Assume that g ̸= f ∈ Aut(X)p and g ̸= id. Since g ̸= id, it
does not fix points of A1 either (by the previous case). Then for h := g ◦ f
we have h(A1) = A1, h(A2) = A2. Hence, as in the previous paragraph,
h = id. It follows that f2 = id, g = f = f−1.

Thus in this case Aut(X)p is finite.
Case 3: p has precisely one almost section. Then there are no automorphisms

of type A, since there are no two disjoint sections. If Aut(X)p contains no auto-
morphisms of type B, then Aut(X)p is finite by Lemma 11.23. If Aut(X)p contains
an automorphism of type B, then, thanks to Corollary 11.24, Aut(X)p contains no
automorphisms of type C. Since all automorphisms of type B have to share this
section in their sets of fixed points, Aut(X)p ∼= (C+)n by Proposition 11.13 (unless
Aut(X)p = {id}).

Case 4: p admits precisely two almost sections S1 and S2 and they do not
meet. Then they are sections. But X admits no good configuration. Thus, by
Proposition 11.19 the group Aut(X)p contains a subgroup isomorphic to C∗ of
index at most 2.

Case 5: X is scarce and all almost sections meet pairwise (in particular, all
sections meet pairwise). Then Aut(X)p contains no automorphism of type A. If
Aut(X)p contains an automorphism of type B, then, by Lemma 11.16, the set of
sections cannot be scarce (provided that there is more than one of them), which is
contradiction. Hence Aut(X)p is finite by Lemma 11.23.

Case 6: X is scarce and admits two disjoint sections S1 and S2. By Lemma 11.9,
X admits no good configurations, and by Lemma 11.16 it has no automorphisms
of type B. By Corollary 11.20, Aut(X)p contains a subgroup isomorphic to C∗ of
index at most 2.

The proof now repeats the proof of Theorem 5.4 in [7] with only one modification:
C+ should be changed to (C+)n and, accordingly, Lemma 2.10 should be applied.
The group Aut(X)p can be included in the short exact sequence

1 → (Aut(X)p ∩ Aut0(X)) → Aut0(X) τ−→ H0 → 1, (56)

where H0 = τ(Aut0(X)) ⊂ Tor(Y ) is a torus (see Remark 5.6). According to
Cases 1–6, one of the following holds:

• Aut(X)p ∩ Aut0(X) is finite (thus Aut0(X) is a complex torus);
• Aut(X)p ∩ Aut0(X) ∼= (C+)n;
• Aut(X)p ∩ Aut0(X) ∼= (C∗).

Thus, by Lemma 2.10 the group Aut0(X) is commutative. Now the theorem
follows from the fact that Aut(X)/Aut0(X) is bounded (see Proposition 3.5).
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13. Rational bundles over poor manifolds

In this section we consider rational bundles over poor manifolds. We prove that
if Y is poor, then p is scarce and the results of the previous section apply.

Definition 13.1. We say that a compact connected complex manifold Y of
positive dimension is poor if it enjoys the following properties:

• Y does not contain analytic subspaces of codimension 1 (a fortiori, the alge-
braic dimension a(Y ) of Y is 0);

• Y does not contain rational curves, that is, it is meromorphically hyperbolic
in the sense of Fujiki [24].

A complex torus T with dim(T ) > 2 and a(T ) = 0 is a poor Kähler manifold.
Indeed, a complex torus T is a Kähler manifold that does not contain rational
curves. If a(T ) = 0, it contains no analytic subsets of codimension 1 [11; Chap. 2,
Corollary 6.4]. An explicit example of such a torus of dimension 2 is given in [11;
Example 7.4]. Explicit examples of poor tori of any dimension are presented in [8].
Another example of a poor manifold is provided by a non-algebraic K3 surface S
with the Néron–Severi group NS(S) = 0 (see [9; Chap. VIII, Proposition 3.6]).

Below Y is assumed to be a compact connected complex manifold.

Proposition 13.2 [7; Proposition 3.6]. Let (X, p, Y ) be an equidimensional ra-
tional bundle. Assume that Y contains no analytic subsets of codimension 1. Then
(X, p, Y ) is a P1-bundle.

Proof. Let dim(Y ) = n, and let

S = {x ∈ X | rk(dp)(x) < n}

be the set of all points inX where the differential dp of p does not have the maximum
rank. Then S and S̃ = p(S) are analytic subsets of X and Y , respectively (see,
for instance, [54; Chap. VII, Theorem 2], [57; Theorem 1.22], [73]). Moreover,
codim(S̃) = 1 (see [72]). Since Y contains no analytic subsets of codimension 1, we
obtain: S̃ = ∅. Thus the holomorphic map p has no singular fibres.

Lemma 13.3. Let (X, p, Y ) be a P1-bundle such that dim(Y ) = n. For an almost
section A set Σ(A) = {y ∈ Y | p−1(y) ⊂ A}. If Y contains no analytic subsets of
codimension 1, then

(i) any n-section has no ramification points (i.e., the intersection X ∩Py consists
of n distinct points for every y ∈ Y );

(ii) if A1 and A2 are two almost sections, then p(A1 ∩A2) ⊂ Σ(A1) ∩ Σ(A2);
(iii) any two distinct sections of p in X are disjoint;
(iv) if there is an almost section A ⊂ X that is not a section, then X contains

neither sections nor n-sections.

Proof. (i) Let R be an n-section of p, and let A be the set of all points x ∈ R
where the restriction p|R : R → Y of p to R is not locally biholomorphic. Then
the image p(A) is either empty or has pure codimension 1 in Y ([20; § 1, 9], [56;
Theorem 1.6], [73]). Since Y contains no analytic subsets of codimension 1, we have
p(A) = ∅. Hence, A = ∅.
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(ii) Let B be an irreducible component of A1 ∩ A2. Since dim(B) = n − 1
and dim(p(B)) 6 n − 2, we have p−1(p(b)) ⊂ B for every point b ∈ B. Thus,
p(b) ∈ Σ(A1) ∩ Σ(A2).

(iii) In particular, if A1 and A2 are distinct sections, then Σ(A1) = Σ(A2) = ∅
and A := A1 ∩A2 = ∅.

(iv) Since A is not a section, there is a point y ∈ Y such that Py = p−1(y) ⊂ A.
Thus for any n-section S we have S ∩ A ̸= ∅. This contradicts assertion (ii) since
Σ(S) = ∅. Hence such a section S does not exist.

Corollary 13.4. Let (X, p, Y ) be a P1-bundle, dim(Y ) = n. If Y contains no
analytic subsets of codimension 1, then one of the following holds:

(i) X ∼ Y × P1 ;
(ii) X admits two disjoint sections, and Aut(X)p contains a subgroup G ∼= C∗ of

index at most 2;
(iii) X admits two meeting almost sections, and Aut(X)p is finite;
(iv) X admits precisely one almost section D ; then either Aut(X)p ∼= C+ (and D

is a section by Lemma 11.14) or Aut(X)p = {id};
(v) X admits no almost sections and Aut(X)p is finite.

Proof. First, note that since Y does not admit meromorphic functions, given
a line bundle L on Y , either H0(L) = {0} or L is trivial and H0(L) ∼= C.

Item (i): Assume that X admits m > 3 almost sections. By Lemma 13.3 they
are disjoint over an open set U ⊂ Y that has a complement of codimension 2. Thus,
X ∼ Y × P1 by Lemma 11.2.

Item (ii) follows from Corollary 11.20.
Item (iii) is proved in Case 3 of the proof of Theorem 12.1.
Item (iv) follows from Proposition 11.13: if Aut(X)p ̸= {id}, then Aut(X)p is

isomorphic to the additive group of Cm. This means that for corresponding line
bundle we have 0 < m = H0(L). Hence m = 1.

Item (v) follows from Lemma 11.23.

Lemma 13.5. Let (X, p, Y ) be a P1-bundle such that dim(Y ) = n. If Y is poor,
then Bim(X) = Aut(X).

Proof. Since Y contains no rational curves, it is not uniruled. According to
Corollary 5.5, every map f ∈ Bim(X) is p-fibrewise, that is, there exists a group
homomorphism τ̃ : Bim(X) → Bim(Y ) (see Lemma 5.4) such that for all f ∈
Bim(X)

p ◦ f = τ̃(f) ◦ p.

Since Y contains no rational curves, every meromophic map into Y is holomorphic
([24], also see Remark 3.4). Thus τ̃(f) ∈ Aut(Y ).

For f ∈ Bim(X) let S̃f be the indeterminacy locus of f , which is an analytic
subspace of X of codimension at least 2 [73; p. 369]. Let Sf = p(S̃f ), which is an
analytic subset of Y (see [73], [54; Chap. VII, Theorem 2]). Since Y contains no
analytic subsets of codimension 1, codim(Sf ) > 2. Moreover, f is defined at all
points of X \ p−1(Sf ). By Lemma 5.12 both f ∈ Bim(X) and f−1 ∈ Bim(X) can
be extended to X holomorphically, hence Bim(X) = Aut(X).
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We summarize the result in the following theorem.

Theorem 13.6. Let (X, p, Y ) be an equidimensional rational bundle over a poor
Kähler manifold Y . Then

• (X, p, Y ) is a P1-bundle (see Proposition 13.2);
• Bim(X) = Aut(X) (see Lemma 13.5).

Assume additionally that Y is Kähler and X is not isomorphic to the direct product
Y × P1 . Then

• X admits at most two almost sections (Corollary 13.4);
• the connected identity component Aut0(X) of the complex Lie group Aut(X)

is commutative (Theorem 12.1);
• the group Aut(X) is very Jordan (Theorem 12.1);
• the commutative group Aut0(X) sits in a short exact sequence of complex

Lie groups
1 → Γ → Aut0(X) → H → 1, (57)

where H is a complex torus and one of the following conditions holds (Corol-
lary 13.4):
(a) Γ = {id}, the trivial group;
(b) Γ ∼= C+ , the additive group of complex numbers;
(c) Γ ∼= C∗ , the multiplicative group of complex numbers.
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